
Low-Resource Footprint, Data-Driven
Malware Detection on Android

Simone Aonzo, Alessio Merlo , Mauro Migliardi , Luca Oneto, and Francesco Palmieri

Abstract—Resource-constrained systems are becoming more and more common as users migrate from PCs to mobile devices and as

IoT systems enter the mainstream. At the same time, it is not acceptable to reduce the level of security hence it is necessary to

accommodate the required security into the system-imposed resource constraints. This paper introduces BAdDroIds, a mobile

application leveraging machine learning for detecting malware on resource constrained devices. BAdDroIds executes in background

and transparently analyzes the applications as soon as they are installed, i.e., before infecting the device. BAdDroIds relies on static

analysis techniques and features provided by the Android OS to build up sound and complete models of Android apps in terms of

permissions and API invocations. It uses ad-hoc supervised classification techniques to allow resource-efficient malware detection. By

exploiting the intrinsic nature of data, it has been possible to implement a state-of-the-art data-driven model which provides deep

insights on the detection problem and can be efficiently executed on the device itself as it requires a very limited computational effort.

Besides its limited resource footprint, BAdDroIds is extremely effective: An extensive experimental evaluation shows that it outperforms

the currently available solutions in terms of accuracy, which is around 99 percent.

Index Terms—Android security, malware analysis, supervised learning, data-driven models, model selection, feature ranking

Ç

1 INTRODUCTION

IN the field of computing the problem of sustainability may
be tackled from several different angles. A first approach

takes into account the problem of reducing the resource con-
sumption of computing centers [1], while a secondone is ded-
icated to the greening of the network infrastructures [2]. At
the same time, the need to control the resource consumption
cannot interfere with the need to guarantee the desired levels
of security [3], [4]. However, as the number of users relying
on mobile devices for their daily routines increases and IoT
systems enter the mainstream, sustainability cannot be seen
only as an effort to reduce the resource footprint of systems
that are intrinsically not constrained, but also as the need to
develop new methodologies that allow both performing tra-
ditionally resource hungry activities on resource constrained
devices and reduce the impact of attacks on the energy con-
sumption of the device [5], [6], [7]. In particular, the problem
of providing appropriate security levels without depleting
the resources of devices is of paramount importance. To this
aim, in this paper we focus on the problem of providing a

methodology to detect malicious software on resource con-
strained devices with a very low resource footprint. Fur-
thermore, to prove the efficacy of our methodology we
also provide an actual tool implementing it on a very com-
mon mobile platform, namely, the Android operating sys-
tem. In the mobile world, the number of devices adopting
the Android Operating System (hereafter, Android) and
depending on online markets to install mobile applications
(hereafter, apps) has been steadily growing for years and
is still growing at present [8]. Consequently, the number of
users relying on an Android-based device to perform com-
mon daily tasks is increasing and, because of this fact, the
number of malicious apps (hereafter, malware) is likewise
raising. As the traditional signature-based mechanism can-
not cope with the increasing number of malware variants
and polymorphic code exploited in them, in recent years
several efforts have been put forward by the research com-
munity to define new approaches to malware detection.
Among others, the most promising ones rely on data-
driven techniques whose aim is to learn how to classify
apps into two sets, namely legal and malware apps, based
on the analysis of already classified apps.

This new approach, however, is usually resource hungry
and has some drawbacks that may limit its actual applica-
bility. The first issue is that data-driven techniques need to
extract meaningful features from the apps that have to be
classified. A very rich set of features may allow to build a
very precise classification model but it may also overload
the device beyond acceptable usability, thereby preventing
the implementation of model on the device. For this reason,
it is necessary to extract a set of features which is large
enough to support the definition of a reliable model,
but also small enough to be computed on the resource

� S. Aonzo, A. Merlo, and L. Oneto are with the Department of Informatics,
Bioengineering, Robotics, and Systems Engineering (DIBRIS), University
of Genoa, Genova, GE 16126, Italy.
E-mail: {simone.aonzo, alessio}@dibris.unige.it, luca.oneto@unige.it.

� M. Migliardi is with the Department of Information Engineering, Univer-
sity of Padua, Padova, PD 35131, Italy.
E-mail: mauro.migliardi@unipd.it.

� F. Palmieri is with the Department of Computer Science, University of
Salerno, Fisciano, SA 84084, Italy. E-mail: fpalmieri@unisa.it.

Manuscript received 28 Aug. 2017; revised 18 Oct. 2017; accepted 13 Nov.
2017. Date of publication 16 Nov. 2017; date of current version 8 June 2020.
(Corresponding author: Francesco Palmieri.)
Recommended for acceptance by K. Andersson, X. Chen, C. Esposito, and
E. Rondeau.
Digital Object Identifier no. 10.1109/TSUSC.2017.2774184

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020 213

2377-3782� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-2272-2376
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0002-3634-7554
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0003-1760-5527
https://orcid.org/0000-0003-1760-5527
mailto:
mailto:
mailto:
mailto:

constrained device in a sustainable way. Another limitation
of this kind of models arises when the behavior of the pro-
gram to be classified is evaluated at runtime (i.e., dynamic
analysis). In fact, in such a situation, there is always the risk
to recognize a threat only after the system has been compro-
mised: therefore, this kind of analysis is generally carried
out off-device, in secure sandboxed environments, albeit
some proposals for anomaly detection at runtime on mobile
have been recently put forward [9]. When dealing with the
need of on-device analysis, the safest solution is to rely only
on features that may be statically extracted from the pro-
gram code without the need to execute it (i.e., static analy-
sis). Finally, from a data-scientist point of view, there is the
need to deal with the overfitting problem that occurs when
the model excessively adapts to the set of apps on which the
model has been trained, without guaranteeing an adequate
generalization performance needed to detect previously
unseen apps (i.e., zero-day malware).

In this paper we present BAdDroIds, an Android app
capable of analyzing apps as soon as they are installed on
the device, thereby allowing to classify an app as legal or
malware before its execution, with a high degree of accu-
racy and a low resource footprint. We adopted state-of-the-
art data-driven machine learning techniques for building
the malware detection system, in such a way that they can
efficiently execute on a resource-constrained mobile device.
In detail, we studied both qualitatively and quantitatively
how the model works and how malware can be detected.
Our tests have been performed by merging the most
recently updated malware databases for a total of more
than seven thousand malware samples, and have demon-
strated to correctly classify the apps in approximately the 99
percent of the cases. The performance of BAdDroIds sug-
gests that it can be adopted on actual mobile devices to exe-
cute on-the-fly analysis of new apps with a very limited
impact on the user experience.

Structure of the paper. The rest of the paper is organized as
follows: Section 2 provides some background and discusses
some related work, while Section 3 presents the data-driven
model at the basis of BAdDroIds. Section 4 discusses the
experimental results of BAdDroIds on the field. Finally,
Section 5 concludes the paper by discussing some future
development of BAdDroIds.

2 RELATED WORK

The aim of this work is to define a new approach to binary
classification of malware on Android through data-driven
techniques that take into account as features both the per-
missions required by apps as well as the Android API (here-
after, AAPI) they invoke. In order to justify the reasons
behind this choice, we briefly introduce here some relevant
basics on the Android security mechanisms. The main secu-
rity mechanisms in Android are the app sandbox and the
usage of permissions. Android executes each app in a
restricted sandbox, built by taking advantage of the multi-
user nature of the Linux Kernel. In a nutshell, upon installa-
tion each app gets assigned a Linux User ID (UID) and
whenever the app executes, it runs in its own user space.
The aim of sandboxing is to improve the separation among
apps by leveraging the isolation natively granted by the

Linux Kernel to different system users. Beyond sandboxing,
Android requires that each app declares its resource
requirements as a set of permissions upon installation. With-
out loss of precision, permissions can be seen as strings that
denote the possibility for an app to require specific function-
alities offered by the operating system. Some basic permis-
sions are automatically granted at install time and never
revoked. Other permissions (defined as dangerous [10]) han-
dle the privacy of the user (i.e., they allow the app to profile
the user by accessing his contacts, messages and call logs, as
well as activate camera and audio recording or access the
user’s position) and have to be granted/denied at runtime
by the user himself. At the time of writing, there are 24 dan-
gerous permissions in Android; however, these 24 are
divided into 9 groups that represent the granularity at
which they may be granted/denied. When a dangerous per-
mission is requested by the app for the first time, the user is
prompted to grant/deny the use of the permission to the
app. As described above, if the user grants the permission,
she automatically grants all the permissions in the corre-
sponding group. This implies that if the same app requires
to exploit another permission of the same group for the first
time, the user is not prompted again. This choice allows lim-
iting the number of permission requests at runtime (that can
be annoying for the user), at the cost of a more coarse-
grained control over dangerous permissions. It is also worth
noticing that once a group of dangerous permissions is
granted, it is never revoked by the system; however, the
user can remove a permission from an app by explicitly
modifying the app settings.

An app obtains a system functionality by invoking a spe-
cific AAPI. The set of AAPI invocations can be mostly
inferred from the app bytecode (i.e., the executable app
code) through static analysis techniques. This inference is
possible even if the code is obfuscated. Code obfuscation
refers to a set of techniques applied at compile time by the
developer and used to deter the reverse engineering of the
app (i.e., in this case, the process of disassembling the app
and analyzing its components by a human being). An AAPI
invocation may require specific dangerous permissions.
Thus, an AAPI is executed properly if the app has been
granted the corresponding dangerous permissions. An offi-
cial mapping between AAPI methods and permissions is
not published. However, some work has empirically
inferred this mapping [11]. An example of the correspon-
dence between AAPIs and permissions is the following: the
class android.net.wifi.WifiManager provides the
AAPI method isWifiEnabled() that returns true or false
whether the Wi-Fi interface is enabled or disabled and
needs the permission android.permission.ACCESS_-

WIFI_STATE to check the state of the Wi-Fi. Since a map-
ping (albeit potentially incomplete) exists, checking both
the requested permissions and the AAPI invocations could
appear redundant, as considering the AAPI invocation
inferred though static analysis could suffice. Unfortunately,
the inference of the AAPI set by static analysis alone may be
incomplete, in fact, an app could also leverage advanced
Java mechanisms such as Reflection [12] and Java Native
Interface (JNI) [13] to execute code that is not directly identi-
fiable in the bytecode (i.e., it is impossible to infer all the
specific invocations through static analysis alone). Yet, an

214 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

AAPI invocation, especially a dangerous one, can still
require some permissions to execute properly when
invoked at runtime. Hence, we argue that taking into
account both permissions and AAPI invocations as features
for binary classifying malware allows detecting more mali-
cious behaviors than each of the two by itself.

Several examples of data-driven Android malware detec-
tion systems exist in literature. One of the earliest work is
KIRIN [21]. It defines a set of security rules describing
potentially dangerous permission patterns. For instance, an
app requiring both the RECEIVE_SMS and the SEND_SMS

permissions is considered risky by KIRIN. The approach
has been assessed on a very limited set of apps (i.e., 311),
and allowed to recognize 10 apps violating all inferred secu-
rity rules. Among them, 5 has been proved to be real mal-
ware through manual code inspection.

Table 1 provides a comparison among some of the most
influential works that use ML techniques for malware detec-
tion, ordered by year of publication. We defined three
labels, namely L(ow) M(edium) H(igh), describing the sus-
tainability of the approach. The labeling is based on the
resource footprint of the described tool, taking into account
how much computational power is needed for collecting
the features and apply the model to them. We always
assume that the model is generated only once, during the
training phase, not on the resource constrained device,
hence the cost of the model generation is not used to evalu-
ate the sustainability of the approach.

DroidMat [14], PBMD [15] and MDLS [19] are considered
Low-sustainable for the following reasons: DroidMat
requires to create the Inter-procedural control flow graph of
the app, PBMD uses dynamic analysis, and MDLS down-
loads and parses the market description. In this respect, we
choose to avoid considering the whole invocation chain our
work as this would require to statically build a data struc-
ture (e.g., a flow graph) that is expensive in terms of mem-
ory and computational power.

TLPD [17] and Drebin [18] are considered Medium-
sustainable because for generating the Used permissions set
they must check if every method invocation in the code
requires some permissions.

PUMA [16], PIndroid [20] and BAdDroIds are considered
High-sustainable because they collect the features with a lin-
ear analysis of the bytecode and the AndroidManifest file.

Previous works focus on the extraction of the following
static features: requested permissions, used permissions,
app components, intents, inter-component communication
(ICC), meta data extracted from online market description,
string patterns (e.g., URLs, IP addresses, base64, etc.) and
API calls. For the sake of clarification, ours is the only
approach that considers every API, i.e., every method invo-
cation (that cannot be obfuscated) given by the language
and the Android framework. For example we also consider
the java.lang.String constructor. Usually authors
check different subsets of API, often related to privacy or
permissions declared in the manifest, but this selection lacks
of important feature like Reflection and the loading of
native code.

We chose a small subset of the most significant features
among the ones that were already being researched exten-
sively in previous publications and we demonstrated that
they are enough for a very good classification. Obviously,
other alternatives can be taken into consideration, but they
would require too much memory or computation in order
to be efficiently usable on a mobile device.

None of the cited articles use our set of features but our
approach has higher accuracy with respect to any other
paper in literature except PIndroid [20]. However, the high
level of accuracy granted by PIndroid is calculated on a
very reduced dataset of malware samples. Furthermore, no
other work in literature also provides a freely available app
for testing and the whole set of data allowing to replicate
and check the presented statements. Finally, it is worth not-
ing that our testbed is the second biggest malware dataset
(7494) w.r.t. other works. Indeed, only in the MDLS experi-
ence presented in [19] the authors tested the solution on a
dataset of 26398 malware samples.

3 THE DATA DRIVEN CLASSIFICATION MODEL

For our specific malware classification purposes, we con-
sider the supervised learning framework, with particular
reference to the binary classification problem, where an

TABLE 1
Related Work Comparison

Paper DroidMat [14] PBMD [15] PUMA [16] TLPD [17] Drebin [18] MDLS [19] PIndroid [20] BAdDroIds

Year 2012 2013 2013 2014 2014 2016 2017 2017
Sustainability L L H M M L H H
Static features
Req. permissions @ @ @ @ @ @ @ @
Used permissions @ @ @
App components @ @
Intents @ @ @
API calls* @ @ @ @
Inter-Comp Comm. @
Market description @
String pattern @
Dynamic analysis @
N� of apps 1738 21684 606 30084 129013 78649 1745 14988
Legal 1500 20548 357 28548 123453 52251 1300 7494
Malware 238 1136 249 1536 5560 26398* 445 7494
Accuracy 97.87 98 78 98.6 94 94 99.8 98.9

AONZO ET AL.: LOW-RESOURCE FOOTPRINT, DATA-DRIVEN MALWARE DETECTION ON ANDROID 215

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

input space X and an output space Y are available [22]. In
our case X ¼ f0; 1gd, where each element of the space repre-
sents the presence or the absence of a particular declared
permission or AAPI invocation (as AAPI invocations are
retrieved from code through static analysis we will call
them retrieved AAPI), and Y ¼ f�1g, since the possible
labels are legal ðþ1Þ or malware ð�1Þ. Note that, the same
problem can be faced as a novelty detection task [23]. In
fact, in real world situations, the number of malware appli-
cations is much lower with respect to the number of legal
ones. We made a preliminary study on the available data by
exploiting the most recent tools in the novelty detection con-
text [24], but results were not satisfying both in terms of
accuracy and also in terms of resource requirements
because of the need for the use of the kernel and a huge
number of legal apps. In the supervised learning frame-
work, the goal is to estimate the unknown rule m : X ! Y
which associates a label Y 2 Y to an element X 2 X . In gen-
eral, m can be non-deterministic [22] (i.e., different apps
may have the same sets of declared permissions and/or
retrieved AAPI invocation but different label). A data
driven technique estimates m through a learning algorithm
A H : Dn � F ! f , characterized by its set of hyperpara-
meters H, which maps a series of examples of the input/
output relation, contained in a dataset of n samples
Dn : X1; Y1ð Þ; . . . ; Xn; Ynð Þf g sampled from m (or in other
words n different labelled Android apps), into a function
f : X ! Y. The error that f commits, in approximating m, is
measured with reference to a loss function ‘ : X � Y �
F ! ½0;1Þ. In our case, we will make use of the Hard loss
function which counts the number of errors ‘HðfðXÞ; Y Þ ¼
½fðXÞ 6¼ Y � 2 f0; 1g [22]. The purpose of any learning proce-
dure is to select the best set of hyperparameters H such that
the expected error LðfÞ ¼ Em‘ðfðXÞ; Y Þ – which unfortu-
nately is unknown since m is unknown – is minimum. Obvi-
ously, the error that f commits over Dn is optimistically
biased since Dn has been used for building f itself. For this
reason another set of fresh data, composed of m samples
and called test set T m ¼ fðXt

1; y
t
1Þ; . . . ; ðXt

m; y
t
mÞg, needs to

be exploited. Note that, Xt
i 2 X and Y t

i 2 Y with
i 2 f1; . . . ;mg, and the association of Y t

i to Xt
i is again made

based on m.
Many different algorithms exist in literature such as the

Kernel-based method [23], the Neural Network-based
one [25], [26], [27], the Ensemble Methods [28], the Bayesian
approaches [29], the Local Methods [30], among others. In
our case, we need to keep in mind that the classification
model f ¼ A HðDnÞ needs to run on a mobile device. For
this reason we have to exploit a model which requires as lit-
tle computational effort as possible [31]. In particular, the
computational requirements of the training phase, namely
the time needed to build f , are not important since the train-
ing phase can be performed offline. What is instead crucial
are the computational requirements needed in order to com-
pute fðXÞ since it must be done on the device. In this con-
text Kernel-based method are usually the best suited
choice [32], [31]. Other alternatives exist such as Extreme
Learning Machines [33], Deep Neural Networks [34], Ran-
dom Forests [35], or Gaussian Processes [36] but the forward
phase of these methods usually requires much more mem-
ory and computations with respect to our proposal [31].

We use two learning algorithms, one linear and one non-
linear by carefully considering the computational require-
ments of computing fðXÞ. Moreover, we will try to get
insight on the problem of detecting a malware based on
declared permissions and retrieved AAPI invocations by
detecting the most important subset of them and their
weight (i.e., if the presence of an invocation or a declared
permissions is an indication of malware or not). Finally, we
will show how to tune the hyperparameters of the different
algorithms and how not to simply get a binary answer from
fðXÞ (legal or malware) but also a reliability estimation of
such response.

For what concerns the linear approach, let us define F as
the set of all the possible linear separators in the space X :
fðXÞ ¼ WTX þ b with W 2 Rd and b 2 R [22]. Based on this
choice the most intuitive way of choosing W and b is to
choose the solution which minimizes the error over the
available data [22]

ðW; bÞ : argmin
W;b

Xn
i¼1

‘HðWTXi þ b; YiÞ: (1)

Unfortunately, the Problem (1) has two drawbacks: (i) it is
NP-Hard since the loss function is non-convex [31] and (ii)
it is ill-posed and may overfit the available data and have
large expected error [37]. In order to solve issue (i) it is nec-
essary to approximate ‘H with one of its convex relaxations.
The most suited one is the Hinge loss function
‘�ðfðXiÞ; YiÞ ¼ max½0; 1� YifðXiÞ� [22], the simplest convex
upper bound of ‘H, which is also the best choice in this con-
text [38]. By solving issue (i) we can also address the issue
(ii) since, by exploiting ‘�, it is possible to introduce a regu-
larization term, inspired by the Tikhonov regularization
principle [39], which allows to derive a well posed alterna-
tive to Problem (1). Several regularization terms exists, form
the L1 to the L2 and Lp norms [40], [41], [42], but in this
work we will exploit the combination of the L1 and the L2
regularization schemes [42]. This choice is made since, in
our case, d � n and the presence of many declared permis-
sions and retrieved AAPI invocations are correlated with
each other. L1L2 regularization schema, also called elastic
net regularization [42], is both a regularization and variable
selection method. L1L2 often outperforms the L1, while pro-
viding a similar sparsity of representation. In addition, the
L1L2 encourages a grouping effect, where strongly corre-
lated features tend to be in or out of the model together.
L1L2 is particularly useful when d � n (as in our case) and,
contrarily to L1, it is a very satisfactory variable selection
method when d � n. Consequently Problem (1) can be
reformulated as follows:

ðW; bÞ : argmin
W;b

�kWk22 þ ð1� �ÞkWk1

þ C

n

Xn
i¼1

max½0; 1� ðYiW
TXi þ bÞ�;

(2)

which is a convex problem than can be solved with many
tools developed in recent years [42], [43]. Note that
� 2 ð0; 1Þ is a constant that balances sparsity characteristics
with feature selection ability [42] while C 2 ð0;1Þ is
another constant which balances the tradeoff between
underfitting and overfitting tendency [39]. The sparsity

216 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

effect of the L1 regularizers also allows to reduce the num-
ber of Wj2f1;...;dg 6¼ 0 and then to obtain a model f which can
run with reduced computational requirements [31].

The shape of the model f , built by solving Problem (2),
together with the sparsity effect of the L1 regularizers and
the fact that X ¼ f0; 1gd, allows us to derive a simple yet
effective and efficient feature selection and ranking method
which also has the ability to infer if a feature is an indicator
of malware or legal [44]. In fact, if some Wj with j 2
f1; . . . ; dg are equal to zero the meaning is straightforward:
that feature jth is not meaningful for distinguishing
between legal or malware. If, instead, a particular Wj with
j 2 f1; . . . ; dg is different from zero, since Xj 2 f0; 1g, and
Wj > 0 the feature jth is an indication that the app is a mal-
ware. Analogously, if Wj < 0 the feature jth is an indica-
tion that the app is legal. Finally, the magnitude of Wj gives
its raw importance.

The limitation of Problem (2) is the shape of f which is
linear [22]. In order to overcome this limitation, we can
define f as a nonlinear function fðXÞ ¼ WTFðXÞ þ b where
F : Rd ! RD with D � d (since with d features we were not
able to find a good classifier), W 2 RD, and b 2 R. Then, we
can substitute the new f in Problem (2) and exploit the rep-
resenter theorem [45] in order to observe that the solution of
Problem (2) can be expressed as W ¼

Pn
i¼1 aiFðXiÞ with

ai 2 R where i 2 f1; . . . ; ng. By substituting these results in
Problem (2) we obtain the following problem

ðW; b;aÞ : arg min
W;b;a

�kWk22 þ ð1� �ÞkWk1

þ C

n

Xn
i¼1

max½0; 1� ðYiW
TFðXiÞ þ bÞ�

s:t: W ¼
Xn
i¼1

aiFðXiÞ:

(3)

Note that, Problem (3) suffers from the curse of dimension-
ality since the size of the problem depends on D. If D is
large it may become intractable. For this reason, if we
exploit the kernel trick [46], and, instead of applying the
regularization overW we equivalently apply the regulariza-
tion to a, we obtain the following problem

ða; bÞ : argmin
a;b

�kak22 þ ð1� �Þkak1

þ C

n

Xn
i¼1

max 0; 1� Yi

Xn
j¼1

ajKðXi;XjÞ þ b

 !" #
;

(4)

where KðXi;XjÞ ¼ FðXiÞTFðXjÞ, F can remain unknown,
fðXÞ ¼

Pn
i¼1 ajKðXi;XÞ þ b, and the problem is still convex.

We opt for a Gaussian Kernel KðXi;XjÞ ¼ e�
kXi�Xjk22

s for the
reason described in [47]. Obviously, the feature selection and

ranking phase in this case is not possible but Problem (4) still

takes into account the computational requirements of a

mobile device. In fact, the L1 regularization allows to reduce

the number of ai with i 2 f1; . . . ; ng different from zero. The

smaller the number of as different from zero is, the less

computational expensive is the computation of fðXÞ.
Another issue that we have to face is how to tune the

hyperparameters of the proposed algorithms (�, C, and s for
the nonlinear case) [48]. The values of the hyperparameters

deeply affect the performance of the final classification
model A HðDnÞ and for this reason they must be tuned care-
fully. Resampling techniques like cross validation [49] and
non-parametric bootstrap [50] (BOO) are often used by prac-
titioners because they work well in many situations [48].
Other alternatives exist, which are bases in the Statistical
Learning Theory, which give more insight into the learning
process. Examples of methods in this last category are: the
seminal work of the Vapnik-Chervonenkis Dimension [22],
its improvement with the Rademacher Complexity [51], [52],
the theory of compression [53], [54], the Algorithmic Stability
breakthrough [55], the PAC-Bayes theory [56], [57], andmore
recently the Differential Privacy theory [58], [59].

In our specific case the BOO will be exploited since it is
the most effective one in cases like the one described in the
paper, where the cardinality of the sample is reasonable [48].
BOO relies on a simple idea: the original dataset Dn is
resampled many (no) times with replacement, to build two
independent datasets called training and validation sets,
respectively Lo

l and Vo
v, with o 2 f1; . . . ; nog. Note that

Lo
l \ Vo

v ¼ �. Then, in order to select the best set of hyper-
parameters H in the set of possible ones H ¼ fH1;H2; . . .g
for the algorithm A H or, in other words, to perform the
model selection phase, the following procedure needs to be
applied

H	 : argmin
H2H

1

no

Xno
o¼1

bLVo
vðA HðLo

l ÞÞ; (5)

where bLSðfÞ ¼ 1
jSj
P

ðX;Y Þ2S ‘HðfðXÞ; Y Þ. Since the data in Lo
l

are different with respect to the ones in Vo
v, the idea is that

H	 should be the set of hyperparameters which allows to
achieve a small error on a data set that is independent from
the training set. Note that, in BOO, l ¼ n and Lo

l must be
sampled with replacement from Dn, while Vo

v ¼ DnnLo
l .

Finally, it is worth underlining that the classifier that
we have just proposed gives, as an output, only the
answer legal or malware. In a real world scenario this
information is not enough. What it is important is also
the reliability of the models’ answers. For this reason we
exploit the proposal of [60] which is able to take the
fðXÞ (in our case fðXÞ ¼ WTX þ b for the linear model
and fðXÞ ¼

P
ðXi;YiÞ2Dn

ajKðXi;XÞ þ b for the nonlinear

one) and associates a probability to the choice of the
model. In particular

PffðXÞ ¼ þ1g ¼ 1

1þ egfðXÞþb
; (6)

where g 2 R and b 2 R are chosen by minimizing the
negative log likelihood averaged over the different Vo

v which
is a cross-entropy error function

ðg;bÞ : argmin
g;b

�
Xno
o¼1

X
ðX;Y Þ2Vo

v

Y þ 1

2

� �
log

1

1þ egfðXÞþb

� ��

þ 1� Y þ 1

2

� �
log 1� 1

1þ egfðXÞþb

� ��
:

(7)

AONZO ET AL.: LOW-RESOURCE FOOTPRINT, DATA-DRIVEN MALWARE DETECTION ON ANDROID 217

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

4 EMPIRICAL EVALUATION

We empirically evaluated the proposed data driven model
on a set of 14988 APKs, half of which (i.e., 7494) are malware
samples, while the remaining 7494 are legal apps down-
loaded from the Google Play Store [61]. We define the APKs
in the latter set as legal as all of them have been previously
analyzed through Virus Total [62] without being recognized
as malware by any of its 59 different antivirus engines;
therefore, it is reasonable to assume that they are not mal-
ware. The malware APKs have been downloaded from the
AndroZoo dataset that contains officially recognized mal-
ware. Each entry in such dataset contains information about
the source app market and the Virus Total scan result. We
took into consideration any APK that has been recognized
as malware by at least 30 engines in Virus Total. As previ-
ously pointed out, we considered as features the required
permissions, the AAPI invoked in the app, and a combina-
tion of both. Regarding AAPI, we were not interested in
building the chain of invocations in the app that leads to
invoke the specific AAPI as discussed in Section 2. On the
contrary, we were only interested in determining whether a
specific AAPI is invoked somewhere in the app code, inde-
pendently from how or when it is really invoked. Thus, we
parsed the AndroidManifest file (i.e., the file that contains,
among others, all the permissions required by the app) to
extract the required permissions, and the DEX files to
retrieve the AAPI invocations, thereby building, for each
app A, the set PA of required permissions, and the set IA, of
AAPI invocations.

It is worth pointing out that app developers can define
their own custom permissions. Other apps declaring a cus-
tom permission can access to the specific functionality pro-
vided by the app defining it. This often happens for apps
developed by the same developer. Even if there is a known
attack [63], [64] that exploits a vulnerability in custom per-
mission, we disregard them from our analysis because the
exploited vulnerability has been fixed since Android 5,
allowing only apps signed with the same signing key to
define the same <permission> element, and the malware
in our dataset very rarely use or define custom permissions.
For these reasons, we considered only the official Android
permissions [65], thereby discarding all custom permissions
defined by apps.

Therefore, given fAnd as the set of all Android permis-
sions, and an app A, we have that for each p 2 PA then
p 2 fAnd and PA
 fAnd. Regarding the extraction of AAPI
invocations, we adopted dexlib2 [66], a library that sequen-
tially analyzes the bytecode and build up an abstract
representation of the code. From this representation, we

extracted all the AAPI invocations. In this respect, it is
worth mentioning that we ignore method overloading for
AAPI methods. In a nutshell, method overloading in Java is
the possibility to have different methods in a class having
the same name, as long as their arguments list is different.
In our extraction, we consider overloaded AAPI invocations
as semantically equivalent. This means that we consider
i 2 I as the concatenation of the class and the method name
even if there are multiple entries with the same method
name in the class.

4.1 Experimental Results

In this section, we discuss the results achieved by applying
the techniques proposed in Section 3 to the problem
described in Section 2, based on the data described in
Section 4.

In particular two approaches have been compared:

� LIN: the linear learning algorithm proposed in Prob-
lem (2);

� KER: the non linear learning algorithm proposed in
Problem (4);

For what concerns LIN, we set H ¼ f�;Cg and H ¼
f10�4:0; 10�3:8; . . . ; 100g � f10�4:0; 10�3:8; . . . ; 103:0g while for
KER we set H ¼ f�; C; gg and H ¼ f10�4:0; 10�3:5; . . . ; 100g �
f10�4:0; 10�3:5; . . . ; 103:0g � f10�4:0; 10�3:5; . . . ; 103:0g and no ¼
103. For what concerns ðg;bÞ, the best solution is searched
on the following grid f�10�6:0;�10�5:9; . . . ; 106g � f�10�6:0;
�10�5:9; . . . ; 106g.

Moreover, the three scenarios discussed in Section 4 have
been investigated, namely:

� PER: where a classifier is built just based on the fea-
tures related to the required permissions (i.e., {PA});

� INV: where a classifier is built just based on the fea-
tures related to the AAPI invocations (i.e., {IA});

� PERINV: where a classifier is built based both on the
features related to the declared permissions and the
ones related to the AAPI invocations.

We split the s ¼ 14988 samples in Dn and T m such that
nþm ¼ s and Dn \ T m ¼ � and n 2 f750; 1500; 3000; 6000;
12000g. Experiments have been repeated 30 times in order
to obtain statistically relevant results.

In Table 2 we reported the bLT mðA H	ðDnÞÞ of LIN and
KER for problem PER, INV and PERINV when varying n.
Based on the results reported in Table 2, it is possible derive
some observation.

The first one is that the larger is the training set (the more
app we use for training the model) the more effective
the resulting model is. Moreover, in general, the KER is
more powerful than LIN. As expected, the more information
we provide to the learning algorithm the more effective the
resulting model will be. In particular, the AAPI invocations
have more predictive power with respect to the permissions
and together they have even more predictive performance.
Surprisingly, the difference of the two best performing mod-
els, LIN and KER with PERINV, is not statistically relevant
(the two distributions of the errors cannot be distinguished
with a t-test). Therefore, we chose the LIN model that is
more suitable to be deployed on a smartphone device as it
requires less computational resources in comparison to KER.

TABLE 2bLT mðA H	ðDnÞÞ of LIN and KER for Problem PER, INV,
and PERINV when Varying n

n
PER INV PERINV

LIN KER LIN KER LIN KER

750 12:6� 0:9 11:9� 0:8 5:3� 0:3 5:4� 0:3 5:1� 0:2 5:2� 0:2
1500 12:4� 0:8 10:5� 0:8 4:0� 0:3 4:1� 0:3 4:0� 0:2 4:0� 0:2
3000 12:3� 0:8 10:9� 0:8 3:4� 0:3 3:4� 0:3 2:9� 0:2 3:0� 0:2
6000 12:0� 0:8 10:2� 0:7 3:2� 0:2 2:9� 0:2 2:2� 0:1 1:7� 0:2
12000 11:7� 0:7 9:2� 0:6 2:5� 0:1 2:2� 0:2 1:1� 0:1 1:0� 0:2

218 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

In Table 3 we reported the confusion matrices (in %) of
the best performing models, namely LIN and KER for
PERINV when n ¼ 12000. From Table 3 it is possible to
observe that the false positive and false negative rate is quite
balanced in both models, thereby indicating that the models
have a high quality. Furthermore, for the sake of complete-
ness we also provided in Table 4 the scores associated to
some of the most common performance indexes.

In Table 5 the confusion matrices (in %) of LIN and KER
for PERINV and n ¼ 12000 are reported. These matrices
take into account also a warning class that represents the
case when an app is classified as malware with a probability
between 30 and 70 percent. In this case, the decision is left to
the user; such alternative allows to remarkably reduce the
number of false positives and false negatives at the expenses
of letting the user decide in critical cases.

In Table 6 the Top 20 permissions and AAPI invocations,
together with their raw importance (see Section 3), of LIN are
reported. We consider only LIN as it is the only one that can
provide such information, for PER, INV, and PERINV with
n ¼ 12000. From Table 6 it is possible to observe that a small
amount of permissions and AAPI invocations have high
importance for predicting the presence of amalware (strongly
positive raw importance). Contrarily, a large amount of them
have small importance for predicting the absence of a mal-
ware (weakly negative raw importance). This is reasonable
since some permissions and AAPI invocations are a sort of
strong indicator for a malware while the presence of many
other permissions and AAPI invocations show that the app is

performing common legal tasks. This underlines that innocu-
ous permissions and AAPI invocations have high importance
for predicting the absence of amalwarewith data-driven tech-
niques while conventional approaches just search for mal-
ware behaviors. In general, the analysis of results suggests
that the main goal of malware is to collect as much informa-
tion as possible about the user and the phone, as well as get-
ting access to the SMS service (i.e., to force the user to
subscribe to some payment services).

5 CONCLUDING REMARKS

Sustainability in the field of computing must not interfere
with security, hence, it is important that security systems
and related measures are designed from the very start to be
sustainable and compatible with the resource constraints of
the target platform. This is important in the perspective of
greening computing and networking, but is paramount in
the world of mobile devices and IoT, where resources in gen-
eral and energy in particular represent very hard constraints.
In this paper we have presented a machine learning-based
technique that focuses on the identification of malware in
resource constrained devices such as Android smartphones.
Our technique has a very low resource footprint and does
not rely on resources outside the protected device. The tech-
nique is at the basis of BAdDroIds, an Android app focused
on early identification of a malware, more in details, directly
at installation time, without heavily impacting the usability
and the battery life of the mobile device. We adopted a data-
driven approach capable of achieving a high level of accu-
racy in malware identification on the basis of a set of features
easily inferable from apps through static analysis techniques.
To validate our methodology we have implemented BAd-
DroIds (see Fig. 1), which has been released on the Google
Play Store,1 and we have tested it on almost fifteen thousand
different apps half of which were malware (Fig. 2 shows an
example of malware and non-malware analysis results).
BAdDroIds showed an accuracy level equal to 98.9 percent,
more in details 0.6 percent false positives and 0.5 percent
false negatives. The complete dataset as well as further
information on BAdDroIds are available at http://

TABLE 4
Performance Indexes Values (in%) of LIN
and KER for PERINV When n ¼ 12;000

Performance Index LIN KER

sensitivity or true positive rate 0:988� 0:001 0:990� 0:001
specificity or true negative rate 0:990� 0:001 0:990� 0:001
precision or positive predictive value 0:990� 0:001 0:990� 0:001
negative predictive value 0:988� 0:001 0:988� 0:001
false negative rate 0:012� 0:001 0:012� 0:001
fall-out or false positive rate 0:010� 0:001 0:010� 0:001
false discovery rate 0:010� 0:001 0:010� 0:001
false omission rate 0:012� 0:001 0:012� 0:001
accuracy 0:989� 0:001 0:990� 0:001
F1 score 0:989� 0:001 0:990� 0:001
Matthews correlation coefficient 0:978� 0:001 0:978� 0:001
informedness 0:978� 0:001 0:980� 0:001
markedness 0:978� 0:001 0:978� 0:001

TABLE 5
Confusion Matrices (in%) of LIN and KER for PERINV When
n ¼ 12;000When the Warning Class is Introduced (Apps
Classified with Probability of Being a Malware Greater

than 30 Percent and Less than 70 Percent)

Truth

LIN Legal Malware

Prediction
Legal 49:0� 0:1 0:2� 0:1

Warning 0:3� 0:1 0:3� 0:1
Malware 0:3� 0:1 49:1� 0:1

Truth
KER Legal Malware

Prediction
Legal 49:1� 0:1 0:3� 0:1

Warning 0:2� 0:1 0:2� 0:1
Malware 0:3� 0:1 49:1� 0:1

TABLE 3
Confusion Matrices (in%) of LIN and KER

for PERINV When n ¼ 12;000

Truth

LIN Legal Malware

Prediction
Legal 49:4� 0:1 0:5� 0:1

Malware 0:6� 0:1 49:5� 0:1

Truth
KER Legal Malware

Prediction
Legal 49:5� 0:2 0:5� 0:1

Malware 0:5� 0:1 49:5� 0:2

1. https://play.google.com/store/apps/details?id=it.unige.dibris.
baddroids

AONZO ET AL.: LOW-RESOURCE FOOTPRINT, DATA-DRIVEN MALWARE DETECTION ON ANDROID 219

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

http://baddroids.smartlab.ws
https://play.google.com/store/apps/details?id=it.unige.dibris.baddroids
https://play.google.com/store/apps/details?id=it.unige.dibris.baddroids

baddroids.smartlab.ws. The dataset has been also sub-
mitted to UCI [67].

Furthermore, to ensure that the usage of the tool on a
mobile device was neither disruptive to the user experience,
nor incompatible with less powerful devices, we tested it on
a dated device, namely an LG Nexus 5. This device was
released in 2013, runs Android 6.0.1, has a Qualcomm
MSM8974 Snapdragon 800 CPU running at 2.3 GHz, and
2 GB of RAM.

We randomly chose 1000 APKs from our dataset and,
since BAdDroIds starts whenever an app is installed or
updated, we have installed them on our device logging the
size of the DEX file and the time needed for the analysis. We
obtained that the average DEX file size is 5539 KiB and the
average time for analyzing an APK is 64474 ms.

It is worth noting that the specifications of our test device
can be considered comparable with a mid-range mobile
device of the current generation, thus BAdDroIds does not
need a top-notch device to be actually used and on such a
configuration and it requires a minute, on average, to ana-
lyze an app.

While the results in terms of accuracy are remarkable, the
time required to perform the complete analysis is still
clearly perceivable by the user, hence, in future work, we
need to optimize the process to a further extent. Moreover,
while the feature set adopted in this work has shown very
good properties in terms of accuracy of the prediction, we

TABLE 6
Top 20 Permission and Retrieved API Invocations of LIN

for PER, INV, and PERINV with n ¼ 12;000

PER

Raw Importance Permission

1:00 android.permission.SEND_SMS

0:89 android.permission.READ_PHONE_STATE

�0:80 android.permission.ACCESS_NETWORK_STATE

0:75 com.android.launcher.permission.UNINSTALL_

SHORTCUT

0:73 android.permission.CHANGE_WIFI_STATE

0:61 android.permission.READ_SMS

0:59 android.permission.WRITE_APN_SETTINGS

0:58 android.permission.DELETE_PACKAGES

�0:53 android.permission.READ_CALL_LOG

�0:51 android.permission.MODIFY_AUDIO_SETTINGS

0:51 android.permission.ACCESS_LOCATION_EXTRA_

COMMANDS

0:42 android.permission.WRITE_CALENDAR

�0:40 android.permission.READ_EXTERNAL_STORAGE

0:39 com.android.launcher.permission.INSTALL_

SHORTCUT

0:38 android.permission.READ_LOGS

�0:38 android.permission.PACKAGE_USAGE_STATS

0:37 android.permission.RECEIVE_BOOT_COMPLETED

�0:37 android.permission.GET_ACCOUNTS

�0:35 android.permission.DISABLE_KEYGUARD

0:33 android.permission.STATUS_BAR

INV
Raw Importance Retrieved AAPI invocation

1:00 android.telephony.SmsManager->getDefault

0:56 android.content.BroadcastReceiver-><init>
0:51 android.app.admin.DeviceAdminReceiver-><init>
0:49 android.telephony.TelephonyManager->getDeviceId

0:45 android.telephony.TelephonyManager->
getLine1Number

0:42 android.telephony.gsm.SmsManager->getDefault

0:42 java.lang.String-><init>
0:39 java.io.InputStreamReader-><init>
0:39 java.lang.reflect.Field->get

0:37 android.app.admin.DevicePolicyManager->
isAdminActive

�0:36 android.content.Context->getPackageName

0:36 android.app.Application->attachBaseContext

0:36 android.app.ActivityManager->getRunningServices

0:35 android.app.PendingIntent->getBroadcast

�0:35 android.content.Intent-><init>
�0:35 java.lang.String->format

0:35 java.lang.String->valueOf

�0:33 android.content.Context->getSystemService

0:32 android.content.Context->getDir

0:32 android.os.Bundle->get

PERINV
Raw Importance Permission or Retrieved API invocation

1:00 android.permission.SEND_SMS

0:46 android.telephony.SmsManager->getDefault

0:44 android.content.BroadcastReceiver-><init>
0:42 android.app.Application->attachBaseContext

0:40 android.app.admin.DeviceAdminReceiver-><init>
�0:39 android.permission.ACCESS_NETWORK_STATE

0:37 android.telephony.TelephonyManager->getDeviceId

0:37 java.io.InputStreamReader-><init>
0:34 android.telephony.TelephonyManager->

getLine1Number

�0:32 android.content.Context->getPackageName

0:30 java.lang.String-><init>
0:28 java.lang.String->valueOf

0:28 java.lang.reflect.Field->get

�0:28 java.lang.String->format

0:28 java.io.FileOutputStream->write

0:28 android.app.admin.DevicePolicyManager->
isAdminActive

�0:28 android.content.Context->getSystemService

0:27 android.webkit.WebView->setDownloadListener

0:27 android.permission.RECEIVE_SMS

�0:27 java.util.Iterator->next

Fig. 2. BAdDroIds: Malware and non-malware classification.

Fig. 1. BAdDroIds on the Google play store.

220 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

http://baddroids.smartlab.ws

need to verify its resilience to obsolescence and we also
need to explore the possibility to adopt more sophisticated
properties of the apps as independent features, like the
interaction with other apps through intents, as well as the
usage of Reflection and JNI.

REFERENCES

[1] Q. Li and M. Zhou, “The survey and future evolution of green
computing,” in Proc. IEEE/ACM Int. Conf. Green Comput. Commun.,
2011, pp. 230–233. [Online]. Available: http://dx.doi.org/
10.1109/GreenCom.2011.47

[2] A. P. Bianzino, C. Chaudet, D. Rossi, and J. L. Rougier, “A survey
of green networking research,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 3–20, Jan-Mar. 2012.

[3] A. Merlo, M. Migliardi, and L. Caviglione, “A survey on energy-
aware security mechanisms,” Pervasive Mobile Comput., vol. 24,
pp. 77–90, 2015. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1574119215000929

[4] M. Migliardi and A. Merlo, “Improving energy efficiency in dis-
tributed intrusion detection systems,” J. High Speed Netw., vol. 19,
no. 3, pp. 251–264, Jul. 2013. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2595805.2595811

[5] L. Caviglione and A. Merlo, “The energy impact of security mech-
anisms in modern mobile devices,” Netw. Security, vol. 2012, no. 2,
pp. 11–14, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1353485812700156

[6] F. Palmieri, S. Ricciardi, and U. Fiore, “Evaluating network-based
DoS attacks under the energy consumption perspective: New
security issues in the coming green ICT area,” in Proc. Int. Conf.
Broadband Wireless Comput. Commun. Appl., 2011, pp. 374–379.

[7] U. Fiore, A. Castiglione, A. De Santis, and F. Palmieri, “Exploiting
battery-drain vulnerabilities in mobile smart devices,” IEEE Trans.
Sustainable Comput., vol. 2, no. 2, pp. 90–99, Apr.-Jun. 2017.

[8] T. Verge, “The entire history of iphone versus android summed
up in two charts,” [Online]. Available: http://www.theverge.
com/2016/6/1/11836816/iphone-vs-android-history-charts,
Accessed on: Oct. 19, 2017.

[9] A. Merlo, M. Migliardi, and P. Fontanelli, “Measuring and esti-
mating power consumption in android to support energy-based
intrusion detection,” vol. 23, no. 5, pp. 611–637, 2015.

[10] Dangerous permissions. [Online]. Available: https://developer.
android.com/guide/topics/permissions/requesting.html#normal-
dangerous, Accessed on: Oct. 19, 2017.

[11] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the Android permission specification,” in Proc. ACM Conf. Com-
put. Commun. Security, 2012, pp. 217–228.

[12] Android reflection. [Online]. Available: https://developer.
android.com/reference/java/lang/reflect/package-summary.
html, Accessed on: Oct. 19, 2017.

[13] Java native interface on android. [Online]. Available: https://
developer.android.com/training/articles/perf-jni.html, Accessed
on: Oct. 19, 2017.

[14] D.-J.Wu,C.-H.Mao, T.-E.Wei, H.-M. Lee, andK.-P.Wu, “Droidmat:
Android malware detection through manifest and API calls
tracing,” in Proc. 7th Asia Joint Conf. Inf. Security, 2012, pp. 62–69.

[15] Z. Aung and W. Zaw, “Permission-based android malware
detection,” Int. J. Sci. Technol. Res., vol. 2, no. 3, pp. 228–234, 2013.

[16] B. Sanz, I. Santos, C. Laorden, X. Ugarte-Pedrero, P. G. Bringas,
and G. �Alvarez, “PUMA: Permission usage to detect malware in
android,” in Proc. Int. Joint Conf. CISIS’12-ICEUTE’ 12-SOCO’ 12
Special Sessions, 2013, pp. 289–298.

[17] X. Liu and J. Liu, “A two-layered permission-based android mal-
ware detection scheme,” in Proc. 2nd IEEE Int. Conf. Mobile Cloud
Comput. Serv. Eng., 2014, pp. 142–148.

[18] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of android mal-
ware in your pocket,” in Proc. NDSS, 2014, pp. 1–12.

[19] T. Ban, T. Takahashi, S. Guo, D. Inoue, and K. Nakao, “Integration
ofmulti-modal features for androidmalware detection using linear
SVM,” in Proc. 11th Asia Joint Conf. Inf. Security, 2016, pp. 141–146.

[20] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamatha-
van, “Pindroid: A novel android malware detection system using
ensemble learning methods,” Comput. Security, vol. 68, pp. 36–46,
2017.

[21] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile
phone application certification,” in Proc. 16th ACM Conf. Comput.
Commun. Security, 2009, pp. 235–245.

[22] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA:
Wiley, 1998.

[23] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Anal-
ysis. Cambridge, U.K.: Cambridge Univ. Press, 2004.

[24] L. Swersky, H. O. Marques, J. Sander, R. J. Campello, and
A. Zimek, “On the evaluation of outlier detection and one-class
classification methods,” in Proc. IEEE Int. Conf. Data Sci. Adv. Ana-
lytics, 2016, pp. 1–10.

[25] C. M. Bishop, Neural Networks for Pattern Recognition. London,
U.K.: Oxford Univ. Press, 1995.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
Cambridge, MA, USA: MIT Press, 2016.

[27] G. B. Huang, D. H. Wang, and Y. Lan, “Extreme learning
machines: A survey,” Int. J. Mach. Learn Cybern., vol. 2, no. 2,
pp. 107–122, 2011.

[28] C. Zhang and Y. Ma, Ensemble Machine Learning. Berlin, Germany:
Springer, 2012.

[29] E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning. Cambridge, MA, USA: MIT Press, 2006.

[30] T. Cover and P. Hart, “Nearest neighbor pattern classification,”
IEEE Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[31] L. Oneto, S. Ridella, and D. Anguita, “Learning hardware-friendly
classifiers through algorithmic stability,” ACM Trans. Embedded
Comput., vol. 15, no. 2, pp. 23:1–23:29, 2016.

[32] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“Human activity recognition on smartphones using a multiclass
hardware-friendly support vector machine,” in Proc. Int. Workshop
Ambient Assisted Living, 2012, pp. 216–223.

[33] J. Tang, C. Deng, and G. B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 4, pp. 809–821, 2016.

[34] J. S., “Deep learning in neural networks: An overview,” Neural
Netw., vol. 61, pp. 85–117, 2015.

[35] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–
32, 2001.

[36] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. Cambridge, MA, USA: MIT press, 2006.

[37] A. Bakushinskiy and A. Goncharsky, Ill-Posed Problems: Theory and
Applications. Berlin, Germany: Springer Science & Business Media,
2012.

[38] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri,
“Are loss functions all the same?” Neural Comput., vol. 16, no. 5,
pp. 1063–1076, 2004.

[39] A. N. Tikhonov and V. I. A. Arsenin, Solutions Ill-Posed Problems.
New York, NY, USA: Halsted Press, 1977.

[40] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Roy. Statistical Soc.. Series B (Methodological), vol. 58, no. 1,
pp. 267–288, 1996.

[41] F. Sch€opfer, A. K. Louis, and T. Schuster, “Nonlinear iterative
methods for linear ill-posed problems in banach spaces,” Inverse
Problems, vol. 22, no. 1, 2006, Art. no. 311.

[42] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” J. Roy. Statistical Soc.: Series B (Statistical Methodol-
ogy), vol. 67, no. 2, pp. 301–320, 2005.

[43] D. Anguita, A. Ghio, L. Oneto, J. L. Reyes-Ortiz, and S. Ridella, “A
novel procedure for training l1-l2 support vector machine classi-
fiers,” in Proc. Int. Conf. Artif. Neural Netw., 2013, pp. 434–441.

[44] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, 2003.

[45] B. Sch€olkopf, R. Herbrich, and A. J. Smola, “A generalized repre-
senter theorem,” in Proc. Int. Conf. Comput. Learn. Theory, 2001,
pp. 416–426.

[46] B. Scholkopf, “The kernel trick for distances,” in Proc. Int. Conf.
Neural Inf. Process. Syst., MIT Press, 2001, pp. 283–289.

[47] S. S. Keerthi and C. J. Lin, “Asymptotic behaviors of support vec-
tor machines with gaussian kernel,” Neural Comput., vol. 15, no. 7,
pp. 1667–1689, 2003.

[48] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample and out-
of-sample model selection and error estimation for support vector
machines,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9,
pp. 1390–1406, Sep. 2012.

[49] S. Arlot and A. Celisse, “A survey of cross-validation procedures
for model selection,” Statist. Surveys, vol. 4, pp. 40–79, 2010.

AONZO ET AL.: LOW-RESOURCE FOOTPRINT, DATA-DRIVEN MALWARE DETECTION ON ANDROID 221

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/GreenCom.2011.47
http://dx.doi.org/10.1109/GreenCom.2011.47
http://www.sciencedirect.com/science/article/pii/S1574119215000929
http://www.sciencedirect.com/science/article/pii/S1574119215000929
http://dl.acm.org/citation.cfm?id=2595805.2595811
http://dl.acm.org/citation.cfm?id=2595805.2595811
http://www.sciencedirect.com/science/article/pii/S1353485812700156
http://www.sciencedirect.com/science/article/pii/S1353485812700156
http://www.theverge.com/2016/6/1/11836816/iphone-vs-android-history-charts
http://www.theverge.com/2016/6/1/11836816/iphone-vs-android-history-charts
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/guide/topics/permissions/requesting.html#normal-dangerous
https://developer.android.com/reference/java/lang/reflect/package-summary.html
https://developer.android.com/reference/java/lang/reflect/package-summary.html
https://developer.android.com/reference/java/lang/reflect/package-summary.html
https://developer.android.com/training/articles/perf-jni.html
https://developer.android.com/training/articles/perf-jni.html

[50] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. Boca
Raton, FL, USA: CRC Press, 1994.

[51] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian com-
plexities: Risk bounds and structural results,” J. Mach. Learn. Res.,
vol. 3, pp. 463–482, 2002.

[52] P. L. Bartlett, O. Bousquet, and S. Mendelson, “Local rademacher
complexities,” Ann. Statist., vol. 33, no. 4, pp. 1497–1537, 2005.

[53] S. Floyd and M. Warmuth, “Sample compression, learnability,
and the vapnik-chervonenkis dimension,” Mach. Learn., vol. 21,
no. 3, pp. 269–304, 1995.

[54] J. Langford and D. McAllester, “Computable shell decomposition
bounds,” J. Mach. Learn. Res., vol. 5, pp. 529–547, 2004.

[55] O. Bousquet and A. Elisseeff, “Stability and generalization,” J.
Mach. Learn. Res., vol. 2, pp. 499–526, 2002.

[56] G. Lever, F. Laviolette, and F. Shawe-Taylor, “Tighter pac-bayes
bounds through distribution-dependent priors,” Theoretical Com-
put. Sci., vol. 473, pp. 4–28, 2013.

[57] P. Germain, A. Lacasse, M. Laviolette, A. ahd Marchand, and
J. F. Roy, “Risk bounds for the majority vote: From a pac-Bayesian
analysis to a learning algorithm,” J. Mach. Learni. Res., vol. 16,
no. 4, pp. 787–860, 2015.

[58] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “Preserving statistical validity in adaptive data analysis,”
in Proc. Annu. ACM Symp. Theory Comput., 2015, pp. 117–126.

[59] C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and
A. Roth, “The reusable holdout: Preserving validity in adaptive
data analysis,” Sci., vol. 349, no. 6248, pp. 636–638, 2015.

[60] J. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” Advances Large
Margin Classifiers, vol. 10, no. 3, pp. 61–74, 1999.

[61] Google play store. [Online]. Available: https://play.google.com/,
Accessed on: Oct. 19, 2017.

[62] Virus total. [Online]. Available: https://www.virustotal.com/,
Accessed on: Oct. 19, 2017.

[63] The custom permission problem. [Online]. Available: https://
github.com/commonsguy/cwac-security/blob/master/PERMS.
md, Accessed on: Oct. 19, 2017.

[64] Android custom permissions leak user data. [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/
android-custom-permissions-leak-user-data/, Accessed on:
Oct. 19, 2017.

[65] Android permissions. [Online]. Available: https://developer.
android.com/reference/android/Manifest.permission.html,
Accessed on: Oct. 19, 2017.

[66] Dexlib2. [Online]. Available: https://github.com/JesusFreke/
smali/tree/master/dexlib2, Accessed on: Oct. 19, 2017.

[67] M. Lichman, “UCI machine learning repository,” [Online]. Avail-
able: http://archive.ics.uci.edu/ml”, Accessed on: Oct. 19, 2017.

Simone Aonzo received the PhD degree in com-
puter science and systems engineering from
DIBRIS, University of Genoa. His research topics
are: mobile security, binary/malware analysis,
and exploitation techniques. Before starting the
PhD, he worked as a security software developer
and pentester for an IT security company.

Alessio Merlo received the PhD degree in com-
puter science from the University of Genova
(Italy), in 2010 where he worked on performance
and access control issues related to Grid Com-
puting. He is currently serving as an assistant
professor with the University of Genoa, Italy. His
research interests focus on performance and
security issues related to Web, distributed, and
mobile systems.

Mauro Migliardi is currently an associate profes-
sor with the University of Padua and adjunct pro-
fessor with the University of Genoa. His main
research interest include the engineering of
secure, energy aware distributed systems. He
tutored more than 80 among bachelor’s, master’s,
and PhD students with the Universities of Genoa,
Padua, and Emory, and he authored or co-
authoredmore than 130 scientific papers.

Luca Oneto received the BSc and the MSc
degrees in electronic engineering from the Uni-
versity of Genoa, Italy, and the PhD degree from
the School of Sciences and Technologies for
Knowledge and Information Retrieval with the
thesis “Learning Based On Empirical Data”, Uni-
versity of Genoa, in 2008, 2010, and 2014,
respectively. In 2017, he obtained the Italian
National Scientific Qualification for the role of
associate professor in computer engineering. He
is currently an assistant professor with the Uni-
versity of Genoa with particular interests include
the statistical learning theory, machine learning,
and data mining.

Francesco Palmieri received the MS and the
PhD degrees in computer science from Salerno
University. He is an associate professor in the
Computer Science Department at Salerno Univer-
sity. His research interests concern advanced net-
working protocols and architectures and network
security. He authored more that 150 scientific
papers in reputed journals and conferences, serves
as the editor-in-chief of an international journal, and
participates to the editorial board of other ones.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

222 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on December 06,2020 at 18:17:07 UTC from IEEE Xplore. Restrictions apply.

https://play.google.com/
https://www.virustotal.com/
https://github.com/commonsguy/cwac-security/blob/master/PERMS.md
https://github.com/commonsguy/cwac-security/blob/master/PERMS.md
https://github.com/commonsguy/cwac-security/blob/master/PERMS.md
http://blog.trendmicro.com/trendlabs-security-intelligence/android-custom-permissions-leak-user-data/
http://blog.trendmicro.com/trendlabs-security-intelligence/android-custom-permissions-leak-user-data/
https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
https://github.com/JesusFreke/smali/tree/master/dexlib2
https://github.com/JesusFreke/smali/tree/master/dexlib2
http://archive.ics.uci.edu/ml

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

