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Abstract—Bring Your Own Vulnerable Driver (BYOVD) at-
tacks abuse legitimate, digitally signed Windows drivers that
contain hidden flaws, allowing adversaries to slip into kernel
space, disable security controls, and sustain stealthy campaigns
ranging from ransomware to state-sponsored espionage. Because
most public sandboxes inspect only user-mode activity, this
kernel-level abuse typically flies under the radar. In this work, we
first introduce the first dynamic taxonomy of BYOVD behavior.
Synthesized from manual investigation of real-world incidents
and fine-grained kernel-trace analysis, it maps every attack
to sequential stages and enumerates the key APIs abused at
each step. Then, we propose a virtualization-based sandbox
that follows every step of a driver’s execution path, from the
originating user-mode request down to the lowest-level kernel
instructions, without requiring driver re-signing or host mod-
ifications. Finally, the sandbox automatically annotates every
observed action with its corresponding taxonomy, producing a
stage-by-stage report that highlights where and how a sample
exhibits suspicious behavior. Tested against the current landscape
of BYOVD techniques, we analyzed 8,779 malware samples that
load 773 distinct signed drivers. It flagged suspicious behavior
in 48 drivers, and subsequent manual verification led to the
responsible disclosure of seven previously unknown vulnerable
drivers to Microsoft, their vendors, and public threat-intelligence
platforms. Our results demonstrate that deep, transparent tracing
of kernel control flow can expose BYOVD abuse that eludes tradi-
tional analysis pipelines, enriching the community’s knowledge of
driver exploitation and enabling proactive hardening of Windows
defenses.

I. INTRODUCTION

Bring Your Own Vulnerable Driver (BYOVD) is a sophis-
ticated malware attack technique that leverages legitimate but
vulnerable kernel drivers to compromise computer systems.
While drivers were originally designed to facilitate commu-
nication between the operating system (OS) and physical
hardware, some drivers exist solely to implement system-
level features or to expose privileged operations to user-mode
applications. If these drivers contain vulnerabilities, malicious
actors can exploit them to bypass security mechanisms, gain
elevated privileges, and execute undetected malicious code in

the OS kernel [1]. However, vulnerable drivers are routinely
patched and replaced with new, more secure versions.

This is what makes a BYOVD scenario so dangerous and
effective against modern Windows systems. In these attacks,
malicious software brings along its own copy of a vulnerable
third-party driver and loads it into the operating system –
effectively reintroducing into the system an old vulnerability
it already knows how to exploit.

In recent years, BYOVD attacks have been linked to state-
sponsored cyber espionage campaigns and sophisticated ran-
somware operations [2], in which attackers use this technique
to disable detection and ensure the success of their malicious
activities [3]. Moreover, the fact that these attacks rely on
trusted and signed drivers means that BYOVD attacks can
often remain undetected for extended periods of time, allowing
attackers to conduct prolonged, stealthy campaigns.

While BYOVD is becoming increasingly popular among
malware authors, defense techniques are lagging behind. For
instance, modern Endpoint Detection and Response (EDR)
systems, although effective at monitoring user-mode activity,
are often blind to actions that take place in the kernel. Even
existing dynamic analysis systems and malware analysis sand-
boxes fall short in detecting these threats. For instance, when
a malware sample loads and abuses the Zemana anti-malware
driver to terminate Windows Defender, public sandboxes on
VirusTotal detect only the driver load event, but fail to capture
how it is used once loaded into the system. This limitation
stems from a fundamental lack of visibility into internal
kernel-level communications.

While a significant body of research has been focused on
detecting malicious activity within the kernel [4], [5], [6], [7]–
especially in the context of rootkits and driver-based threats–
existing approaches remain limited in their ability to recon-
struct the kernel drivers’ control flows. Hardware-assisted
runtime monitoring approaches [8] primarily focused on kernel
memory integrity, but lacked insight into behavioral context or
user-mode interactions. HookScout [9], instead, introduced a
combination of static and dynamic analysis to detect kernel
rootkits via anomalous control flow, yet struggled with ob-
fuscation and dynamic resolution–techniques now common in
modern BYOVD attacks. Other dynamic systems have applied
taint tracking and control-flow tracing to detect kernel interface
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abuse [10], [11], but typically lack the semantic depth needed
to attribute actions to specific user-mode initiators.

The complexity of tracking drivers’ control-flow arises from
the fact that these interactions span multiple abstraction layers
within the Windows operating system. A single command in
user-space can trigger a cascade of driver dispatch routines,
indirect function calls, and deferred callbacks deep within
the kernel. Drivers may register multiple entry points–ranging
from standard IRP handlers to minifilter message ports or
even custom callback routines for system events–all of which
attackers can leverage to achieve malicious goals. Accurately
monitoring and attributing these behaviors requires end-to-
end visibility: from the moment a user-space process initiates
communication with a driver, through the internal execution
paths taken within the kernel, and all the way until the final
effect on the system.

In addition, the dynamic nature of driver execution, which
often involves pointer indirection, runtime memory allocation,
and interactions with poorly documented kernel APIs, makes
the task even more complex. Furthermore, there is a need
to correlate these kernel events back to the original user-
mode trigger, which may be separated by layers of abstraction
or deferred execution. In essence, the challenge of studying
BYOVD attacks is not just the ability to capture isolated
function calls in the kernel, but also reconstructing the com-
plete behavioral chain that links a user-mode command with
a sequence of low-level kernel actions. This requires fine-
grained tracing, semantic interpretation, and robust techniques
to resolve ambiguous execution flows, making it a fundamen-
tally hard problem for dynamic analysis platforms.

To address these limitations, our paper brings three key
contributions to the area of malware analysis.

First, we propose a taxonomy of observed BYOVD behav-
iors, capturing the common stages and APIs used in such
attacks. It fuses manual investigation of real-world cases with
dynamic kernel-trace analysis, moving beyond purely static
enumerations to give method-level insight into how malware
abuses drivers. By distilling attacks into five sequential stages–
driver dropping, loading, communication, execution complex-
ity, and observable suspicious behaviors–it supplies a “kill
chain” model that guides defenders in detection and response.

Second, we develop a novel virtualization-based sandbox,
based on DRAKVUF [12], that enables deep inspection of
kernel-mode activities triggered by user-space programs. Our
sandbox–in the spirit of open science, released as open-
source [13]–functions as an advanced offline analyzer: an
analyst feeds a suspected BYOVD sample into the virtualized
environment, where the system runs it and intercepts kernel-
mode API calls, driver dispatch routines, and event chains.
Finally, it produces a report of the sample’s behavior with re-
spect to our taxonomy. However, rather than relying solely on
a fixed, empirically derived rule set, the sandbox captures all
interactions, including those not yet covered in our taxonomy
so that when an unfamiliar sequence arises, even samples with
novel or atypical BYOVD tactics are fully exposed, enabling

researchers to enrich the rule database and guarantee broader,
more accurate malware inspection over time. To the best of
our knowledge, no existing sandbox in the literature is capable
of correlating kernel-level traces to capture BYOVD behavior.

Third, to test and prove the validity of our system, we exam-
ined 8,779 samples containing both recognized and potentially
vulnerable driver datasets. Of the 773 drivers in total, our
system identified BYOVD activities in approximately 44% of
the highly suspicious driver groups and discovered unusual
operations in 48 of the newly revealed drivers. We manually
validated seven of these drivers and the malware sample that
abuses them. We then responsibly disclosed this information
to the interested parties. These results highlight the practical
impact and real-world effectiveness of our taxonomy-driven
approach integrated into our sandbox.

II. BACKGROUND

Starting from Windows Vista 64-bit, Microsoft introduced
Driver Signature Enforcement (DSE) [14], [15] to ensure that
each kernel driver loaded in the system is signed. To sign a
driver, developers submit the binary to Microsoft’s Windows
Hardware Dev Center, where it undergoes a suite of security
and compatibility checks before Microsoft applies its digital
signature [14]. While there have been cases of malicious
drivers signed by Microsoft [16], this is a risky approach for
malware developers. Instead, attackers often exploit legitimate
signed drivers with security flaws that expose kernel functions
to user-mode programs. In particular, malware authors targets
drivers that allow arbitrary memory access or dangerous
actions like process termination, kernel memory mapping,
privileged file access, and I/O monitoring.

If not adequately protected [17], these functionalities can be
exploited by an attacker to subvert the system’s security, e.g.,
to kill a protected process, load an unsigned driver, overwrite
protected files, or to extract security artifacts from memory.
Although Microsoft provides guidelines to minimize unsafe
development practices [18], vulnerable drivers continue to be
discovered on a regular basis.

A common way to trigger a vulnerability in a driver is
to send a properly crafted request. Windows supports two
different types of communications with kernel drivers: Minifil-
ter APIs and I/O Request Packet (IRP). Minifilter drivers
are kernel-mode modules that plug into the Windows Filter
Manager (FltMgr.sys) to inspect, modify, or block, for
example, file-system I/O through pre- and post-operation call-
backs. Communication between user mode and a Minifilter
driver uses a Filter Communication Port, a secure, bidirectional
channel provided by the Windows Filter Manager. An IRP (I/O
Request Packet) instead is a data structure used by Windows
to facilitate communication between user-mode applications
and generic kernel-mode drivers. Within an IRP, a specific
command known as an IOCTL (I/O Control Code) instructs
the driver to perform a particular operation. In this context,
the IRP serves as the delivery mechanism, while the IOCTL
represents the specific instruction it carries. If a driver fails to
properly validate the input of an IRP, attackers may exploit this

2



weakness by crafting malicious IOCTLs, potentially triggering
vulnerabilities in the driver’s handler routines. For instance,
a Process ID (PID) embedded into an IOCTL buffer can
be used to obtain a privileged handle to a process with the
function ZwOpenProcess and then to terminate it through a
call to ZwTerminateProcess. If the PID is linked to an anti-
malware protected service, it can be killed by an unprivileged
application just by abusing a vulnerable driver.

Once a driver with the desired characteristics is identified,
the malware must drop it on disk and then load it after
successfully infecting the system. This procedure is due to the
fact that typical methods used to load drivers (e.g., sc.exe,
NtLoadDriver, or CreateService) require a file path pointing
to a location on disk and cannot be performed from memory.
However, loading a driver in Windows requires the process to
already run with administrative privileges. This raises a crucial
question: why would malware bother loading a driver if it
already has administrative privileges? The answer lies in the
design of modern Windows operating systems. Some processes
and system components are so essential to maintaining the
security and integrity of the system that even administrators
are prohibited from modifying them. Only the kernel has the
necessary privileges to modify these highly protected system
parts. In fact, the two most notable examples of the usage of
the BYOVD technique to tamper with highly protected system
components are the termination of protected processes and the
loading of unsigned kernel drivers.

Protected Processes Termination. Protected Processes Light
(PPL), introduced in Windows 8.1, provides a flexible pro-
tection model designed to isolate processes. They are exten-
sively used to isolate different operating system components,
such as process management, the Local Security Authority
service [19], and Microsoft Defender. In addition, modern
EDRs are implemented by using a combination of user-mode
PPL processes (that contain the detection logic), and kernel-
mode drivers (that provide access to privileged resources).
Nowadays, malware can no longer terminate user-space EDR
components (even when running with administrative privi-
leges), thanks to their protection under the PPL mechanism.
In these cases, an attacker could find a way to limit the EDR
functionalities through other kinds of vulnerabilities [20], [21],
[22], exploit flaws in the PPL implementation [23], or perform
a BYOVD attack to abuse an existing driver that allows a user-
mode process to kill even PPL processes.

Dynamic Code Execution in Kernel Another common reason
for abusing vulnerable drivers is the exploitation of vulnerabil-
ities that allow a user-mode process to execute code in kernel.

An example of this vulnerability can be found in the capcom

.sys driver [24]. This driver was created by the video game
producer company CAPCOM to fight game cheaters and
contains a vulnerability that allows an attacker to execute
code at kernel level. The driver communication is performed
by sending an IOCTL packet that permits to disable the
Supervisor Mode Execution Prevention (SMEP), executes the
code residing at an address specified in the IOCTL packet

by the user mode process, and enables again SMEP. With
this code execution capability, a shellcode could be crafted
to obtain full kernel code execution.

III. TAXONOMY

To systematically characterize the BYOVD threat, we de-
vised a bottom-up taxonomy that incorporates dynamic anal-
ysis by capturing kernel traces generated in our sandbox
environment (later described in Section 1). We began with a
manual review of publicly documented BYOVD cases, draw-
ing on reports from security firms and independent researchers
that detail how modern malware abuses this technique [2],
and extended our work beyond prior efforts. Unlike a recent
CheckPoint blog post [25], which statically enumerates API
calls that can be potentially abused, our taxonomy enriches
each category with method-level trace insights and explicates
the behavioral phases of an attack with dynamic information.
Central to our framework is the validation of the APIs list
originally identified in CheckPoint’s blogpost. We refer to
these as Abusable Imports, and encompass common features
exploited by known BYOVD malware. The complete list
appears in Table VI in the Appendix.

We then created a YARA rule [26], that covered each entry
of the list, and we executed it in the VirusTotal Retrohunt
service. This allowed us to automatically retrieve many 64-
bit signed drivers, which compose our dataset of Potentially
Vulnerable Drivers (PVD) described later in Section V. The
dataset is designed to uncover drivers that, although not
previously reported as vulnerable, may exhibit characteristics
commonly associated with BYOVD exploitation.

We then identified five common stages that all BYOVD
attacks have in common and that represent the essential steps
a sample must take to exploit a vulnerable driver and trigger
behavior that compromises system security. Section IV details
the analysis system we built to dynamically execute samples
and classify their behavior according to these stages:

I) Driver dropping. A sample can utilize a driver already
present in the system or drop (e.g., by decrypting, decompress-
ing, or downloading) a new file, which will later be loaded as
kernel components.

II) Driver loading. Drivers are typically loaded by creating a
Windows service. However, in some cases, a malware sample
may load an unsigned driver by exploiting a vulnerability in
a previously loaded module.

III) Driver communication. Communication with drivers is
primarily carried out by sending I/O Request Packets to the
device they expose. In some cases, if the driver is a Minifilter
driver, communication can occur through Minifilter APIs.

IV) Execution. Triggering suspicious behaviors may require
one or multiple interactions (IRP or Minifilter). This aspect
helps determine whether execution is simple (one) or complex
(multiple).

V) Observable Suspicious Behaviors. We have identified
a list of suspicious behaviors through an iterative process
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detailed in more detail in Section IV. This process was guided
by manual analysis of vulnerable drivers, to inform function
hooking and behavior correlation, and further supported by ex-
amining CVEs associated with Windows drivers. The ordered
sequence in which these behavior groups appear during the
execution of the sample forms a chain of suspicious activity.
We discuss these chains, with a detailed discussion on our
detection approach, in IV-C1.

IV. APPROACH

As previously discussed, traditional malware analysis solu-
tions focus on monitoring user-space components and thus fail
to capture and identify BYOVD attacks. To address this lim-
itation, we introduce a virtualization-based analysis sandbox
specifically designed to detect suspicious driver interactions
originating from user-mode processes while ensuring com-
plete kernel-level monitoring of operating system actions. In
particular, our framework offers (1) a systematic detection of
BYOVD exploitation techniques, (2) an extensive kernel-level
observation to capture subtle and elusive suspicious behaviors,
and (3) automated analysis pipelines to pinpoint suspicious
behavior indicative of driver abuse or exploitation.

A. System Architecture & Requirements

Our system produces a detailed behavioral report that
highlights whether a vulnerable driver has been exploited by
a malware sample according to our taxonomy. In line with
standard sandbox-based malware analysis, we concentrate on
capturing and presenting runtime behaviors, leaving detection
and classification to downstream tools or human analysts.
To this end, our analysis system must satisfy three key
requirements:
• (R1) Distinguish between safe kernel-driver communication

and potential misuse by accurately identifying and extracting
behaviors indicative of abuse.

• (R2) Carefully trace kernel execution to ensure no critical
function calls are overlooked during event handling.

• (R3) Enrich each function call with sufficient dynamic
information about its operands, to support effective analysis.

The analysis outputs a classification of the sample behaviors
inside our taxonomy and a trace of relevant functions that can
pinpoint a vulnerability or an abused functionality.

Our proposed system architecture comprises several in-
terdependent components. The foundation is our virtualized
sandbox, built on top of the Xen hypervisor technology [27],
that provides an isolated, secure, and transparent execution
environment that minimizes interference and allows precise
monitoring of kernel activities. The sandbox management
is provided by Drakvuf [28], [12], an advanced sandboxing
framework that facilitates the systematic execution of malware
samples. Importantly, no instrumentation is inserted into the
guest operating system itself. Thanks to Drakvuf’s hypervisor-
based Virtual Machine Introspection (VMI) capabilities, there
is no need to install kernel modules or other intrusive com-
ponents within the guest. Instead, only a minimal user-mode
application is required, solely to deploy the malware sample,

prevent its memory from being paged out, and initiate its
execution within the virtual machine.

As depicted in Figure 1, the core of our architecture is
represented by the VM introspection capabilities provided
by our custom-developed Drakvuf plugin, kernelmon. Kernel-
mon provides detailed introspection and logging capabilities
of kernel-mode operations by placing breakpoints in crucial
kernel functions. These functions include driver loading and
unloading routines, critical memory allocation APIs, IOCTL
packet handling, and kernel callback routines. The real-time
monitoring capabilities of kernelmon enable it to capture
complete parameter information, execution context, memory
operations, and detailed interactions between kernel modules
and user-mode processes, thus creating a rich and informative
dataset essential for accurate analysis.

Execution traces are recorded in JSON format, which is
stored and indexed in a non-relational database to provide
efficient retrieval and facilitate our post-execution analysis
pipeline. After execution, the logged data is analyzed to
enrich kernel traces with contextual information (e.g., mapping
pointer addresses to function symbols). We also developed
custom algorithms to reconstruct data flows, interaction se-
quences, and kernel events, enhancing analysis accuracy by
capturing indirect or context-sensitive interactions not evident
in the raw data.

For the interested reader, we provide a formalization of the
analysis pipeline in Appendix A-A.

B. Threat Model

The threat model of our sandbox assumes that the sample
runs with administrative privileges (we do not focus on specific
user-mode privilege escalation techniques) sufficient to load a
valid driver from disk because it is a mandatory prerequisite
for BYOVD attacks. The guest Windows machine uses the
default Windows Defender antivirus, configured to exclude
all files and processes from scanning. This prevents Defender
from blocking known malicious samples while maintaining
a realistic AV deployment scenario. Moreover, given that
BYOVD attacks often target specific AV products, we simulate
them by spawning idle processes named after popular AV
vendors and protecting them with kernelmon immediately
before executing the sample. Crucially, evading our behavioral
tracing is inherently difficult because the sandbox operates
at the hypervisor layer, so we reasonably assume that code
executing inside the VM cannot tamper with or bypass it.
Finally, to defeat attempts to obscure malicious actions with
interleaved benign API calls, our system employs data-flow
analysis to reconstruct semantic call chains, allowing us to pin-
point genuine exploit behaviors and discard irrelevant noise.

C. Tracing Kernel Driver Behaviors

The kernelmon plugin provides fine-grained, real-time intro-
spection into kernel-mode operations thanks to a number of
hooks. We verified that all critical driver execution activities
were captured by systematically comparing logged kernel
events with ground-truth data from known drivers. We also
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relied on the Windows Internals books [29], [30] and official
kernel documentation to guide and validate our selection of
hooking points and their coverage of relevant driver behaviors.

1) Observable Suspicious Behavior: These hooks are de-
signed to capture specific high-impact security-related behav-
iors that represent the ultimate goals of BYOVD attacks.
Each instrumentation point targets a suspicious action, such
as memory tampering, protected process termination, and
dynamic code execution within the kernel. To determine which
hooks to implement, we ran malicious examples from different
attack classes and analyzed the functions involved in each
case. By observing these functions and their parameters, we
could identify the specific behaviors tied to each malware goal
(R1). This empirical approach allowed us to define the types
of hooks that need to be monitored in order to capture eight
critical behaviors associated with BYOVD attacks effectively.

[B1] Protected Service Termination Detection – Kernelmon
detects unauthorized terminations of protected processes by
setting hypervisor-based breakpoints on ZwTerminateProcess

and monitoring the sequence of events initiated by user-mode
drivers. Furthermore, it traces the origin of these terminations
by observing handle acquisition APIs, such as ZwOpenProcess

or ObReferenceObjectByHandle. It also reconstructs the full
kill chain from handle access to termination, thus enabling a
precise attribution of such activities to user-mode interactions.

[B2] Privileged User Handle Leakage Monitoring – To
detect privileged handles opened by a kernel driver and used
by user mode components, kernelmon hooks functions with
prefixes like ZwCreate and ZwOpen, focusing on invocations
where the OBJ_KERNEL_HANDLE flag is absent. The omission of
this flag can unintentionally or maliciously grant user-mode
applications unauthorized access to otherwise inaccessible
resources. Kernelmon inspects the structure passed to these
kernel calls and logs all improperly created handles.

[B3] Detection of Unsafe Pool Allocations – Drivers often
allocate non-pageable kernel memory that is both writable and
executable (WX), thus violating modern security practices such
as the W⊕X policy. Kernelmon monitors allocations performed
via ExAllocatePoolWithTag and checks the memory protec-
tion flags and target pool types. If a driver allocates memory
with both PAGE_EXECUTE_READWRITE and NonPagedPool
characteristics, kernelmon flags the allocation and records the
responsible driver context.

[B4] Dynamic Kernel Code Execution Tracking – Ker-
nelmon sets hypervisor-level execute breakpoints on newly
allocated WX memory regions. This allows it to capture ac-
tual execution attempts within dynamically generated code
segments. By correlating execution attempts with previous
memory allocations, kernelmon can attribute runtime code
generation to specific drivers or IOCTLs, thereby identifying
potential execution of unsigned drivers’ code in the kernel.

[B5] Mismatched Memory Mapping Detection – Drivers
sometimes remap physical memory or locked pages with
elevated permissions, such as mapping non-executable re-
gions as executable or bypassing cache protections. Kernel-
mon intercepts remapping operations through functions like
MmMapIoSpace and MmMapLockedPagesSpecifyCache, compar-
ing the requested protection level with the attributes of the
original memory region. Discrepancies are flagged and logged,
providing evidence of possible unsafe memory modifications.

[B6] Real-Time Code Integrity Tampering Detection – To
detect manipulation of kernel-level integrity checks, kernelmon
places write-monitoring breakpoints on critical kernel struc-
tures involved in Windows Code Integrity enforcement, such
as the g_CiOptions global variable [31] or callback tables[32].
When modifications to these structures are detected, kernelmon
logs the offending instruction pointer and stack context. This
captures attempts to disable driver signature enforcement or
patch code integrity in memory—key steps for unsigned driver
loading or stealthy rootkit deployment.

[B7] Detection of Remote Handle Closure – Kernelmon
monitors kernel calls involving cross-process handle manipu-
lations, specifically tracking scenarios where drivers leverage
KeStackAttachProcess to gain remote execution contexts
followed by handle closure via ObCloseHandle. This is com-
monly observed in attacks targeting security or monitoring
processes, enabling the detection of stealthy handle closures
intended to disrupt critical system operations.

[B8] Detection of Arbitrary Memory Reads and Writes
in Kernel Space – Although these general vulnerabilities
exist and are actively exploited by attackers, the detection
of arbitrary read/write operations goes beyond the purpose
of this paper. In fact, to precisely identify their presence
and determine their actual impact on the system, a dynamic
analysis system would need to monitor every single memory
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access that occurs in kernel space. This would impose a
fundamental obstacle to the scalability of the system, and
thus we decided to exclude the monitoring of this generic
behavior from our dynamic approach. This is also justified
by the fact that other approaches, typically based on static
analysis, already exist to detect the presence of arbitrary
read/write vulnerabilities in kernel modules [33], [34], [35].
These tools demonstrate the capability of static analysis to
effectively uncover such issues without requiring exhaustive
dynamic monitoring.

2) Comprehensive Driver Execution Tracing: To obtain
complete visibility over the driver execution (requirement R2),
Kernelmon implements a suite of strategically chosen hooks
that cover the full operational lifecycle of kernel drivers. These
hooks, grouped into five categories (H1–H5), are designed to
capture control transfers into and out of driver code while
preserving context for reconstructing behavior patterns and
verifying sample provenance.

[H1] Driver Lifecycle Event Monitoring – Kernelmon hooks
the MmLoadSystemImageEx and MmUnloadSystemImage kernel
functions to intercept driver loading and unloading events.
These hooks allow the system to detect when a new driver
binary is mapped into memory and later removed, recording
the base address, size, and associated module metadata. This
traceability enables accurate attribution of behaviors to specific
drivers and provides temporal anchoring for behavioral recon-
struction. This monitoring is essential to discriminate whether
suspicious actions originate from recently introduced drivers,
and supports early termination of analysis in the absence of
new driver activity (as defined in the analysis pipeline).

[H2] Driver Communication Entry Point Tracing – Under-
standing how a driver interfaces with user-mode processes is
critical for vulnerability attribution. Kernelmon intercepts the
execution of DriverEntry, the canonical initialization routine,
and subsequently extracts the dispatch table embedded in the
DRIVER_OBJECT structure. It specifically identifies handlers for
IRP_MJ_CREATE and IRP_MJ_DEVICE_CONTROL, which govern
device handle creation and IOCTL processing, respectively.
Additionally, the system supports minifilter communication
ports (through FltCreateCommunicationPort), further en-
hancing driver-to-user communication tracking. The plugin
then sets breakpoints on these routines, enabling fine-grained
tracing of user-to-kernel transitions and input-driven behav-
iors. This capability is particularly useful for identifying driver
communication patterns, such as the triggering of vulnerable
paths via IOCTL messages. These hooks are directly linked
to both R2 and R3, providing operand-level data (e.g., IOCTL
codes and buffer contents) used to classify communication as
benign or exploitative.

[H3] Kernel Callback Routine Analysis – Many drivers reg-
ister asynchronous callbacks to respond to kernel-level events.
Examples include PsSetCreateProcessNotifyRoutine,
PsSetLoadImageNotifyRoutine, and ObRegisterCallbacks.
Kernelmon intercepts these registration calls and dynamically

instruments the associated callback routines by resolving the
function pointer arguments at runtime. Inserting breakpoints
at these addresses captures deferred or event-driven logic.
Callback analysis is instrumental in linking driver activity
to high-level system events and complements control-flow
tracing. It directly supports R2 and R3 by enriching the event
log with context-aware, indirect execution paths.

[H4] Selective Tracing via Process Inclusion/Exclusion –
To manage the trade-off between coverage and overhead,
Kernelmon supports a configurable policy for process inclusion
or exclusion based on executable names or full paths. This
filtering mechanism ensures that only relevant user-mode
processes (e.g., the sample under test) are monitored for driver
interactions. Importantly, this capability helps maintain high
performance in virtualized environments without sacrificing
the completeness of critical trace data, aligning with the need
for scalable analysis as required by R2. One potential concern
is that malicious software could impersonate an excluded
process to evade monitoring. To mitigate this risk, we rely
on the kernel-level process path to filter out only a small
set of processes, such as antivirus components or essential
system background services. Commonly exploited processes
like the Windows shell (explorer.exe) are not excluded
by default. This design choice ensures that exclusion policies
cannot be easily bypassed by malware imitating legitimate
processes. To circumvent this countermeasure, malware would
need to either replace a system binary, likely invalidating its
digital signature, or perform process injection, both of which
are known and detectable techniques that fall outside the scope
of this paper. The exclusion list can be updated dynamically
between runs if more relaxed filtering is needed.

[H5] Full Driver Import Resolution and Execution Tracing
– Kernelmon is capable of tracing all functions imported by
a given driver binary. This includes resolving static imports
from ntoskrnl.exe and other modules by obtaining function
addresses in the Import Address Table (IAT) or via dynamic
resolution through MmGetSystemRoutineAddress. By instru-
menting these function calls, the system reconstructs complete
control flow within the driver, capturing transitions across
both statically linked and dynamically resolved APIs. This
is essential for detecting non-observable internal routines and
indirect attack sequences. Crucially, it ensures that no logic
path escapes analysis, fulfills R2’s completeness requirement,
and supports the semantic call-chain construction of R3.

D. Data Processing and Analysis

During the execution of each sample, kernelmon collects
and logs all telemetry related to kernel driver execution. After
the execution is completed, our system initiates a multistage
analysis pipeline to classify the behavior of the sample and
extract security-relevant insights. The goal of this process is
to reconstruct semantically meaningful activity chains from
raw kernel events and identify patterns that align with our
behavioral taxonomy.
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The first step involves loading the module extraction, where
we query the trace to determine whether any new kernel
drivers were mapped to memory during execution. If no such
driver activity is detected, the analysis is aborted, as our focus
is specifically on detecting abuses originating from possibly
vulnerable or malicious drivers.

Next, we perform driver attribution and lifecycle recon-
struction, which includes identifying driver drop events, lo-
cating driver load operations, and tracking invocations of
key driver routines such as DriverEntry, IoCreateDevice,
IoCreateSymbolicLink, and DeviceControl. By associating
these events with file system activity and process identifiers,
we reconstruct how and when the sample introduced and
engaged each driver.

The core of the analysis revolves around the detection
of observable behaviors as defined in our taxonomy. For
instance, it searches for specific syscall patterns and ker-
nel API usage (e.g., ZwTerminateProcess, MmMapIoSpace,
or ExAllocatePoolWithTag) to identify actions indicative of
process tampering, code injection, memory manipulation, or
privilege escalation. Each suspicious event is correlated with
the driver and user-mode process that triggered it. This de-
tection step is rule-based and relies on a set of predefined
sequences of kernel API invocations and parameter patterns
indicative of suspicious behavior. These rules are derived both
from the plugin’s direct event tagging (e.g., dynamic code
execution or integrity tampering) and from the contextual
inspection of kernel call arguments, such as protected process
IDs in termination requests.

To increase the precision of detection, our system also incor-
porates a lightweight data-flow tracking mechanism. For each
suspicious action, the system recursively traces the propagation
of input values, such as process handles or memory addresses,
across earlier function calls. This reverse data-flow analysis is
configured through a function-to-parameter mapping file and
results in a contextualized call chain (or behavioral frame) that
offers a high-level semantic view of the attack sequence (R3).

The final output of the analysis stage includes:

• A classification of the driver-related activities of the sample
(e.g., driver dropping, loaded via service, IOCTL commu-
nication).

• A timeline of triggered behaviors, along with their associ-
ated driver modules and process origins.

• A condensed behavioral signature composed of call frames
that lead to each detected malicious action.

V. DATASET DESIGN AND METHODOLOGY

To effectively analyze the BYOVD phenomenon, it is
essential to consider kernel drivers that exhibit exploitable
behaviors. To this end, we construct and rely on two distinct
datasets, each curated explicitly for this study.

The first dataset, called the KVD (Known Vulnerable
Drivers) dataset, includes drivers already recognized by the
security community as vulnerable. It serves as a control
set to validate our sandbox’s functionality, assess BYOVD

VT
Relations

Drivers

Execution
Parents

1 2 3 4

Figure 2: Datasets Collection and Filtering Pipeline.

detection performance, and characterize executables involved
in BYOVD attacks.

The second dataset, designated as the PVD (Potentially
Vulnerable Drivers) dataset, is composed of drivers collected
from in-the-wild sources, for which no prior vulnerability in-
formation is available. We use the PVD dataset to evaluate the
sandbox’s ability to perform dynamic detection and to discover
previously undocumented instances of BYOVD exploitation.

Finally, in order to thoroughly study BYOVD attacks,
we also need the user-space executables that deploy these
drivers and potentially leverage their weaknesses for malicious
purposes. We therefore included in both datasets also their
corresponding execution parents, following VirusTotal’s ter-
minology, which consists of those executables that have been
observed to write the driver to disk.

A. Dataset Construction Pipeline

As illustrated in Figure 2, our pipeline begins at Step
1 , where we gather driver samples linked to executable

binaries observed in the wild for each dataset (see the next
subsection for details). In Step 2 , we remove drivers that are
unsupported on modern Windows systems, i.e., 32-bit drivers,
not digitally signed, or those with an invalid signature. In
Step 3 we use VirusTotal’s Relations feature to retrieve all
the execution parents that wrote one of the considered drivers
to disk during dynamic analysis. This is a necessary step
to perform a BYOVD attack, since Windows only supports
loading drivers from storage and not from memory. Finally,
in Step 4 , we cluster the execution parents by using Virus-
Total vhash [36], a fuzzy hashing algorithm based on files’
structure, and retain only a single sample from each cluster.
This helps to reduce redundancy while preserving behavioral
diversity.

Finally, we classify all execution parents based on their
VirusTotal (VT) score, which represents the number of an-
tivirus engines that flag a given binary as malicious. Following
thresholds proposed in prior work [37], we separate the
execution parents into two distinct subsets:
• Samples with a VT score < 6 are considered potentially

benign. However, this set may also include stealthy BYOVD
loaders that avoid widespread detection.

• Samples with a VT score > 49 are considered definitively
malicious, as they are already flagged by the vast majority
of antivirus engines.
This division allows us to analyze the behavioral character-

istics of known malware but also to investigate samples that
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may exploit vulnerable drivers under the radar of traditional
detection systems.

B. Datasets

Known Vulnerable Drivers (KVD) Dataset. To construct the
KVD dataset, we rely on two authoritative sources that catalog
drivers known to be vulnerable. The first is the Living Off The
Land Drivers (LOLDrivers) project [38], a community-driven
initiative that maintains a curated list of Windows drivers with
publicly disclosed vulnerabilities or exploitable design flaws.
Security researchers contribute to this list by submitting driver
samples via pull requests to a dedicated GitHub repository.
Most of these drivers are legitimate, digitally signed, and
remain loadable on fully updated Windows systems. At the
time of collection, the repository included 1805 drivers, with
VT scores ranging from 0 to 63. The second source is the
Microsoft Vulnerable Driver Blocklist [39], a security mech-
anism introduced to prevent the misuse of known-vulnerable
drivers in modern Windows environments. This list, enforced
by default on Windows 11, contains fingerprints and Authenti-
Hashes of drivers that are explicitly blocked from being loaded
by the kernel. The list includes 420 unique driver hashes, with
VT scores ranging from 0 to 32. Drivers from both sources
form the foundation of the Known Vulnerable Drivers dataset.
We merge the dataset into a unified dataset, and we apply
the preliminary filtering Step 2 described before. After this
filtering phase, the KVD dataset contained 917 signed, 64-bit
drivers (as shown in Table I), with 392 unique driver names.

From this list, we obtained a preliminary set of 186,705
execution parents. After sampling and clustering (Step 4 ), we
obtained two groups of execution parents, categorized by their
VT score. The first subset consists of 1948 execution parents
with a VT score less than 6. These samples are still largely un-
detected by mainstream antivirus engines. The second subset
includes 1047 executables with a VirusTotal score greater than
49, thus representing high-confidence malicious samples that
are consistently flagged by the majority of detection engines.
Following this selection procedure, the quantity of distinct
drivers associated with at least one valid execution parent was
reduced to 200.

The samples in these two groups are processed by our
dynamic analysis system to examine how different classes of
executables interact with drivers known to be vulnerable.

Potentially Vulnerable Drivers (PVD) Dataset. With the
second dataset, we wanted to test whether our sandbox is able
to discover drivers that, although not previously known to be
vulnerable, exhibit characteristics commonly associated with
BYOVD exploitation. This dataset assesses our approach’s
ability to detect emerging threats and behavioral patterns in the
wild. For this reason, we specifically collected 64-bit Windows
kernel drivers that statically import at least one function from
the curated list of Abusable Imports, defined in Section III.
After applying our filtering steps, we obtained 5589 signed,
64-bit drivers, as shown in Table I. When we categorize them

Table I: Datasets Cardinality.

Dataset Initial
Drivers

Execution Parents Final
Drivers< 6 > 49

KVD 917 (392 distinct) 1948 1047 162

PVD 5589 (2000 distinct) 3582 2202 611

based on their names, disregarding case sensitivity, we get
2000 unique driver names.

We then proceeded to download and cluster their corre-
sponding execution parents, resulting in a final PVD dataset of
5784 executables: 3582 low-VT and 2202 high-VT samples.
Following this selection procedure, the quantity of distinct
drivers associated with at least one valid execution parent was
reduced to 1,274. These, along with the associated drivers,
form the core of our dynamic evaluation to identify novel
BYOVD threats and assess the sandbox’s detection capabilities
beyond known vulnerabilities.

In conclusion, as can be inferred from Table I, in total
we collected 8779 samples which in turn load a total of 773
drivers.

VI. EVALUATION

To assess the effectiveness of our system in detecting
Bring Your Own Vulnerable Driver (BYOVD) behaviors, we
conducted a comprehensive evaluation guided by two research
questions:
• (RQ1) Can our system successfully identify BYOVD behav-

iors triggered by known vulnerable drivers, as represented
by the KVD dataset?

• (RQ2) Is our system capable of identifying novel instances
of driver abuse in the PVD dataset, even when no prior
reports of vulnerability exist?

A. Experimental Setup and System Configuration

All experiments were conducted in a virtualized environ-
ment built on the Xen hypervisor, with Windows 10 (version
22H2) as the guest operating system. The host machine was
equipped with an Intel i7-12700 CPU @ 2.12GHz, 64 GB of
RAM, and a 512GB NVMe SSD, providing the necessary re-
sources for large-scale dynamic analysis. Our analysis system
leveraged the Kernelmon plugin within the Drakvuf sandbox
to trace kernel-level operations without modifying the guest
system.

Each sample from the evaluation datasets was executed
in our sandbox environment for a fixed duration of two
minutes. This timeout was selected following prior guidelines
on dynamic malware analysis, as proposed in [40]. During
the execution, the analyzer actively monitors all potential
behaviors defined in the taxonomy presented in Section III. In
addition to generating a classification label for each execution,
the system extracts a sequence of kernel function calls deemed
relevant to the behavior observed. These function traces form
the Semantic Call Chains associated with potentially malicious
actions, such as process termination, memory remapping,
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Table II: Evaluation results show executed samples, driver-loading behavior, and sandbox activity across full, low, and high
VT score malware subsets.

Dataset Executed samples Samples loading at least one driver Samples with observed behaviors

All VT < 6 VT > 49 All VT < 6 VT > 49 All VT < 6 VT > 49

KVD 2995 1948 (65.04%) 1047 (34.96%) 1471 1003 (51.49% †) 468 (44.70% †) 304 194 (19.34% ‡) 110 (23.50% ‡)
PVD 5784 3582 (61.93%) 2202 (38.07%) 1412 868 (24.23% †) 544 (24.70% †) 442 167 (19.24% ‡) 275 (50.55% ‡)

† Percentage relative to the corresponding executed samples count
‡ Percentage relative to the corresponding loading at least one driver count

Table III: We report sandbox coverage by driver groups, high-
lighting how many had drivers loaded and showed observable
behavior during execution.

Dataset
Driver
Groups Loaded

With an
observed
behavior

Without an
observed
behavior

KVD 162 106 (65.43%) 44 (41.51%) 62 (58.49%)
KVDVT<6 139 91 (65.47%) 28 (30.77%) 63 (69.23%)
KVDVT>49 95 64 (67.37%) 28 (43.75%) 36 (56.25%)

PVD 611 118 (19.31%) 48 (40.68%) 70 (59.32%)
PVDVT<6 524 97 (18.51%) 38 (39.18%) 59 (60.82%)
PVDVT>49 318 56 (17.61%) 19 (33.93%) 37 (66.07%)

or code integrity tampering, as detailed in Section IV. For
samples exhibiting one or more suspicious behaviors, we
conducted a preliminary inspection of the function trace to
assess detection accuracy and context. In cases where further
validation was required, a manual analysis was performed to
confirm the nature of the reported behavior.

B. False Positives and False Negatives

Our system outputs behavioral information that may sug-
gest whether a vulnerable driver has been exploited by a
malware sample. In keeping with the traditional sandbox-
based malware analysis approach, we focus on capturing and
reporting runtime behavior, leaving detection and classification
to downstream tools or human analysts. Crucially, because our
sandbox only raises an alert once it observes the complete
sequence of kernel events that formally defines a behavior
with respect to our taxonomy, “False Positives” in the classic
detection sense simply do not arise: every positive alert corre-
sponds to a concrete execution trace rather than an inference
or heuristic guess.

That said, determining whether a detected behavior consti-
tutes an actual vulnerability, an intentional abuse, or a benign
use case still requires the analyst to reconstruct the full attack
chain, an inherently time-consuming task that demands human
expertise. Thanks to our hypervisor-level visibility and precise
kernel-event mapping, researchers can accurately map low-
level actions to their respective attack classes and leverage
existing user-mode tracing solutions to piece together the
complete exploit vector.

On the other hand, False Negatives can arise in three cases:
I) whenever a sample exercises a vulnerability pattern that

our taxonomy does not cover, II) a code bug in our hooks or
reconstruction rules, and III) if the relevant code path is never
triggered within the execution window. In the first and second
case, we developed our taxonomy with due scientific rigor, but
it is possible that unknown techniques exist that indeed we
cannot estimate–as the bugs in our code. In the third case, we
will clarify better the possible causes of missed code coverage
due to time limits or evasive behavior in Section VII.

C. RQ1: Detection of Known BYOVD Behaviors

For our first experiment, we analyzed execution parents
associated with known vulnerable drivers (KVD dataset).
Given that these drivers have been extensively studied and
exploited in the wild and are documented in resources such
as LOLDrivers and Microsoft’s blocklist, we expect high con-
fidence in the identification of suspicious behaviors, defined
in our taxonomy, when these drivers are loaded and triggered
within the sandbox environment. The likelihood of observing
BYOVD activity increases further when the associated exe-
cution parent has a high VT score, which indicates a higher
probability of malicious intent.

For this experiment, we executed a total of 2995 (i.e.,
1948 + 1047) samples associated with 162 distinct known
vulnerable drivers part of the initial KVD dataset as shown
in Table I. Among these executions, our sandbox identified
a total of 304 instances of execution parents that exhibited
at least one suspicious behavior, representing approximately
10% of the analyzed samples.

Table II summarizes the results regarding the samples’
evaluation. About half of the executions (1524 samples) did
not exhibit any driver loading behavior, which prevented
further analysis by our system. Based on our observations
during the experiments, this lack of activity can be attributed
to several factors: some samples may require user interaction
to trigger their payloads, others serve solely as installers that
drop drivers without executing them, and some may fail to
run due to missing dependencies. It is also important to
note that the execution parent relation provide by VirusTotal
does not guarantee that the driver was actually loaded by
the sample, but only that it was dropped onto the disk.
Moreover, we conducted several statistical tests, reported in
Appendix A-A due to space constraints, and here we discuss
the statistically significant ones. We found that (I) once a driver
is loaded, high-VT PVD samples show behaviors far more
frequently (pFisher < 10−6) than low-VT, (II) high-VT KVD
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samples actually load drivers less often than low-VT ones
(pFisher = 0.0004), and (III) high-VT PVD samples exhibit
much more suspicious behavior w.r.t. KVD.

Further investigation comparing their execution time sug-
gests that phenomena II and III likely stem from a sin-
gle underlying reason, i.e., evasive techniques. In case II,
low-VT KVD drivers that have loaded at least one driver
have been running longer than their high-VT counterparts
(pMann–Whitney = 1.81 × 10−3, medium effect size). This
could be due to the use of evasive techniques, which can be
employed by the sample to detect the analysis environment
and stop execution. While in case III, even if high-VT KVD
drivers have shown less behavior, they have been running for a
longer time than high-VT PVD drivers (pMann–Whitney = 0.020,
medium effect size). Also in this case, we presume that the
time-stalling evasive technique continued to keep the process
alive but without performing additional actions.

Table III summarizes the results of our evaluation by
analyzing distinct driver names in our KVD dataset. Our
sandbox demonstrates promising performance in identifying
driver-related suspicious behavior. Specifically, it achieves a
precision of 43.75% for drivers associated with high VT score
samples–indicating strong alignment with widely recognized
threats and validating the effectiveness of our behavior-based
detection approach. Even among low VT score samples, often
representing novel or less detectable threats, the sandbox
maintains a respectable precision of 30.77%, showcasing its
potential for uncovering previously unknown or stealthy ma-
licious activities.

To investigate the remaining 56.25% of samples for which
no behaviors were detected, we combined manual analysis
and, when possible for known drivers, we reviewed online
reports from cybersecurity companies. This investigation re-
vealed that the vast majority of these drivers are exploited for
arbitrary memory read/write operations. As discussed in Sec-
tion IV-C, our sandbox does not trace this type of vulnerability,
which would require an instruction-level tracing, memory taint
analysis, or extensive use of data breakpoints that would
greatly affect the performance of the introspected OS. We
manually reviewed the 36 clusters of drivers associated with
high-score samples to assess whether the sandbox might be
missing any behaviors described in our taxonomy. Upon closer
inspection, and by analyzing the trace of the driver’s execution
context (e.g., IOCTL handler invocations), we determined that
the majority of these drivers either exhibit arbitrary memory
write capabilities1 or are closely related variants, just with
a different name, of other drivers for which the behavior
was already observed and classified. Arbitrary memory writes,
if performed outside monitored areas, are currently outside
the scope of our dynamic-analysis system due to limitations
discussed in section VII.

Moreover, Table III also shows that VT score is a weak
discriminator: once a driver is actually loaded, the proportion

1See the KDU project for a short list of drivers exhibiting arbitrary memory
writes https://github.com/hfiref0x/KDU

of groups exhibiting at least one BYOVD behavior is quite
similar. We conducted several statistical tests that are reported
in Appendix A-A due to space limitations. The absence of
statistically significant differences (at α = 0.05) means that the
role of VT scores is largely eliminated when aggregating by
driver name rather than by sample. Consequently, the stronger
VT scores effects observed at the sample level (Table II) are
not present because many binaries map to the same driver, and
likely benign or evasive samples dilute any correlation.

Table IV summarizes the observed behavior chains un-
covered during dynamic execution. The most frequently de-
tected behaviors include MismatchedMemoryMapping (172
occurrences), PrivilegedUserHandleFromKernelLeak (56 oc-
currences) and ProtectedServiceTermination (45 occurrences).
Notably, 42 out of the 45 protected process terminations
were observed in samples with a VirusTotal score greater
than 49, providing strong evidence of malicious intent and
BYOVD exploitation in high-confidence malware. It is worth
noting, however, that the dynamic analysis reports provided
by VirusTotal do not indicate any driver activity. Therefore, it
is plausible that the high maliciousness scores associated with
these execution parents originated from user-space malicious
actions unrelated to the BYOVD behavior carried out by the
samples. Moreover, MismatchedMemoryMapping can simply
reflect a “bad” programming practice involving an API call
that relaxes memory protections for a region (for example,
remapping a page from execute to write or vice versa) and
can therefore be benign. In contrast, terminating a protected
process is almost invariably malicious, hence the stark differ-
ence in detection rates shown in our Table IV.

Our system was also able to reconstruct several complex be-
havioral chains, reflecting multi-stage exploitation techniques
commonly observed in BYOVD attacks. The semantic call
chains corresponding to these behaviors were analyzed to
ensure accurate attribution to both the responsible driver and
the originating user-mode process. When warranted, manual
validation was conducted to confirm the result of the attack.
In particular, all instances of ProtectedServiceTermination and
CodeIntegrityTampering were manually reviewed and con-
firmed to be correct, highlighting the precision of the detection
pipeline. It is important to note that while the sandbox is
responsible for detecting suspicious behaviors at runtime,
behavior validation is conducted in the post-processing phase
of our full malware analysis pipeline. Thus, the sandbox serves
as a reliable mechanism for flagging potentially malicious
activities, which might then be subjected to deeper contextual
inspection by an analyst. These results demonstrate that our
sandbox accurately detects BYOVD activities by monitoring
for behavior sequences characteristic of real-world attacks,
fulfilling the objectives set out in RQ1.

D. RQ2: Detection of Novel or Suspicious Behaviors

To evaluate our system’s ability to identify previously
unreported or stealthy BYOVD threats, we analyzed samples
from the PVD dataset. Since these drivers are signed and lack
existing CVEs or blocklist entries, successful detections in this
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Table IV: Observed Behavior Chains in the Execution Parents
of the KVD Dataset

Observed Behavior Chain Total VT < 6 VT > 49

MismatchedMemoryMapping 171 148 23
PrivilegedUserHandleFromKernelLeak 56 31 25
ProtectedServiceTermination 45 3 42
UnsafePoolAllocation
→ DynamicCodeExecution 12 6 6
MismatchedMemoryMapping
→ UnsafePoolAllocation
→ DynamicCodeExecution 11 3 8
UnsafePoolAllocation
→ DynamicCodeExecution
→ MismatchedMemoryMapping 7 3 4
CodeIntegrityTampering
→ MismatchedMemoryMapping 1 0 1
CodeIntegrityTampering 1 0 1

context would result in the discovery of new BYOVD vectors
still unknown to the security community. For this experiment,
we executed a total of 5784 samples (i.e., 3582 + 2202)
associated with 611 distinct potentially vulnerable drivers part
of the initial PVD dataset as shown in Table I. As it happens
for the execution parents of the KVD dataset, and due to the
same reasons, the majority of the samples (4372 samples)
did not exhibit any driver loading behavior, which prevented
further analysis by our system. Among the executions, our
sandbox identified 442 (8%) instances of suspicious behavior
that can be associated with 48 drivers grouped by name,
demonstrating the presence of potentially exploitable activity
in a nontrivial portion of the analyzed samples. To further
assess the risk, we manually investigated. In six cases, we were
able to confirm that the malware sample successfully abused
the driver to execute an attack. For the remaining drivers, when
we only observed dynamic code execution, the exploitation
requirements are more complex, and thus they require further
analysis to determine their viability. We remind that none of
these drivers were known to be used in BYOVD attacks.

Table V provides a breakdown of the most commonly
observed behavior chains. The most prevalent detection was
MismatchedMemoryMapping, occurring in 391 instances, fol-
lowed by ProtectedServiceTermination (25 occurrences), and
PrivilegedUserHandleFromKernelLeak (16 occurrences). Al-
though these drivers are not publicly flagged as malicious,
the presence of such behaviors strongly suggests that they
may be used in BYOVD attacks. These patterns reflect classic
BYOVD exploitation chains used to disable security tools, map
executable memory, or bypass Code Integrity protections.

The analysis of the execution parents of PVD dataset
exhibiting an observed behavior led to the discovery
of previously undocumented drivers exhibiting BYOVD-
like behavior. For instance, we identified multiple signed
drivers—including variants of Zemana.sys, MTKill.sys,
and TfsMonSys.sys—that enabled EDR termination or dy-
namic kernel code execution. We have submitted our findings
to the LOLDrivers project as newly identified threats.

While our sandbox is primarily responsible for surfacing

these behaviors, validation occurs in the downstream analysis
pipeline. Therefore, also in this case, we verified all reported
behaviors through a manual inspection of the semantic call
chains to confirm their legitimacy.

Table V: Observed Behavior Chains in the Execution Parents
of the PVD Dataset

Observed Behaviors Chain Total

MismatchedMemoryMapping 391

ProtectedServiceTermination 25

PrivilegedUserHandleFromKernelLeak 16

CodeIntegrityTampering 5

UnsafePoolAllocation → DynamicCodeExecution 3

MismatchedMemoryMapping → ProtectedServiceTermination 1

UnsafePoolAllocation 1

E. Case Studies

Our sandbox enabled the identification of several notewor-
thy cases involving previously underreported or misclassified
BYOVD attacks. Here we discuss three notable examples of
vulnerable drivers detected using our sandbox, not present in
LOLDrivers nor in Microsoft’s blocklist, that demonstrate the
effectiveness of our approach. We emphasize that these drivers
can be loaded on modern Windows versions. The hashes of
the drivers are reported in Table VII in the Appendix.

kavservice.sys – Targeted EDR Termination Our sys-
tem identified four samples that leveraged the kavservice

.sys driver to terminate protected processes. Our sandbox
reconstructed the complete behavior chain: starting from the
creation of the \Device\MTKillDevice, its symbolic link
\\.\MTKill, and the invocation of IOCTL 0x222000 to
perform process termination. Captured kernel call chains in-
cluded ZwOpenProcess and ZwTerminateProcess, confirming
the exploit. Manual analysis revealed that this driver was
designed explicitly for this purpose, but we do not have
sufficient context to claim that it was purposely developed
for malicious use.

termdd.sys – Abusing a Legacy Microsoft Driver Four
samples with VT scores ≤ 5 were found abusing termdd.

sys, a legacy Terminal Services driver signed by Microsoft.
The exploitation involved an arbitrary memory write to disable
Code Integrity by modifying the ci!g_CiOptions variable,
thus allowing the execution of unsigned drivers. Although this
vulnerability has been known since 2010, the driver has not
been added to the blocklist. Our sandbox accurately captured
the memory tampering behavior and flagged the associated
semantic call chain, emphasizing the risks posed by this legacy,
yet still valid, signed drivers.

probmon.sys – Minifilter-Based Process Termination
We observed one sample abusing probmon.sys, a legitimate
Minifilter driver signed by ITM System, to perform unautho-
rized process termination. Rather than using IOCTL calls, the
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malware leveraged the FilterSendMessage API to commu-
nicate with the driver. Our system traced the non-standard
communication channel and accurately attributed the behavior,
demonstrating the ability to detect misuse even when drivers
do not expose traditional device interfaces.

VII. FINAL DISCUSSION

A. Thresholds of Execution Time and VT score

As with many malware analysis papers, determining the
“best” thresholds, how long to run samples, and how to
select them based on VT score remains an open and or-
thogonal problem. For this reason, we adopted state-of-the-
art values [37], [40]. Consequently, our goal is to maximize
coverage rather than exhaustively test different thresholds;
adopting community-accepted settings lets us devote resources
to analyzing a much broader corpus.

B. Memory-Based Exploits and the Scalability Barrier

Drivers might be vulnerable to powerful memory-write
primitives that enable arbitrary kernel memory modification—
an attractive capability for attackers aiming to disable se-
curity mechanisms or inject stealthy payloads. While it is
theoretically possible to trace these writes using dynamic tech-
niques such as memory breakpoints, doing so comprehensively
would incur a prohibitive performance cost in virtualized
environments. As a result, our system currently monitors only
a limited set of memory regions, such as those related to
Code Integrity enforcement, where modification is strongly
indicative of exploitation. However, this selective approach
may miss other high-value kernel targets. Identifying which
memory regions to monitor a priori is non-trivial, as attackers
continuously evolve their tactics to avoid detection.

Adding this coverage would require hooks for low-level
memory operations, an approach that would incur a prohibitive
runtime overhead. Extending the framework to monitor these
primitives without sacrificing scalability is an important av-
enue for future work.

C. Detection of Emerging and Unknown BYOVD Behaviors

Our detection logic relies on well-studied behaviors, but
BYOVD is evolving, and new drivers can introduce attack sur-
faces beyond our taxonomy. Uncovering these behaviors often
demands manual analysis, deep code inspection, and reverse
engineering. Enhancing detection will mean extending our
framework—e.g., with machine-learning anomaly detection or
automatic signature generation from high-fidelity traces—to
cut manual effort and speed discovery of stealthy or obfuscated
exploitation patterns.

D. Impact of Virtualization-Based Security (VBS)

Modern Windows systems are increasingly adopting secu-
rity hardening features under the umbrella of Virtualization-
Based Security (VBS), including Hypervisor-Enforced Code
Integrity (HVCI). These mechanisms elevate the barrier for
loading unsigned or maliciously modified drivers. While VBS
represents a substantial improvement in OS hardening, it

is not foolproof—numerous known-vulnerable drivers still
load under HVCI as evidenced by our analysis. Our current
sandbox does not simulate or analyze environments where
VBS is actively enforced, potentially overlooking how these
protections influence BYOVD viability. Future iterations of
our system should emulate VBS-enabled configurations to
understand which drivers are still exploitable in such contexts
and to refine detection strategies accordingly.

E. Sandbox Evasion and Anti-Virtualization

The reliable execution of some malware samples can be
influenced by the presence of a hypervisor. Prior research has
shown that various malware families incorporate anti-analysis
techniques capable of fingerprinting virtualized or sandboxed
environments to evade detection and hinder execution [41],
[42], [43], [44]. To evaluate the stealthiness of our sandbox
and identify potential detection artifacts, we tested it using
Al-Khaser [45], a tool specifically designed to assess evasive
techniques. To distinguish genuine detection signals from false
positives, we compared Al-Khaser’s output on our sandboxed
environment with its behavior on a clean Windows 10 installa-
tion running on bare metal. Our analysis revealed that 6.1% (19
out of 309) of Al-Khaser’s detection techniques triggered alerts
even on the bare-metal baseline, indicating these are false
positives unrelated to virtualization. In contrast, 8.1% (25 out
of 309) of the techniques flagged our sandbox environment.
After excluding the false positives, only 1.6% (5 out of 306)
of the detection methods uniquely identified our sandbox as
an analysis environment. These results highlight the high level
of transparency achieved by our sandbox.

VIII. RELATED WORK

A. Virtualization-based Malware Analysis

Dynamic malware analysis, thanks to various techniques
from bare-metal execution to code emulation, has become
an essential method for examining the behavior of malicious
software [46]. A key challenge in this context is determin-
ing the placement of the monitoring software. Garfinkel et
al. [47] were among the first to propose an architecture in
which the Intrusion Detection System (IDS) is no longer co-
located with the malware on the host system but is instead
fully isolated while still retaining complete visibility into the
system’s state—an approach called Virtual Machine Intro-
spection (VMI). The introspection system must have detailed
knowledge of the internal workings of the observed component
in order to extract meaningful information [48], [49]. Early
hypervisor-based systems focused primarily on kernel integrity
protection, such as Petroni et al.’s Livewire [50] and SecVi-
sor [51], which enforced control-flow integrity and memory
protections within the kernel. Rkprofiler [6] is a sandbox-based
tracking system designed to analyze kernel-level malware
behavior by monitoring the execution of QEMU intermediate
instructions, constructing a partial call graphs of the code
traversed by the malware and offering valuable insights into its
structure and execution flow. More recently, Leon et al. [52]
proposed a hybrid dynamic analysis platform in which a
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trusted monitoring agent is installed within the guest OS to
help bridge the semantic gap while leveraging a hypervisor for
isolation and trace collection. Building on these foundations,
Ether, introduced by Dinaburg et al. [53], leveraged hardware
virtualization extensions (Intel VT) to perform transparent
analysis of malware from outside the guest operating system,
minimizing the risk of detection and tampering by the malware
itself. DRAKVUF, developed by Lengyel et al. [28], is a promi-
nent VMI-based framework that uses Xen to hook Windows
kernel functions at runtime without injecting any code into
the guest. It allows passive monitoring of malware execution
at scale while preserving transparency. Our system builds on
DRAKVUF by introducing a dedicated plugin, kernelmon,
specifically designed to trace the runtime behavior of signed
vulnerable drivers as abused in BYOVD attacks. In parallel,
HyperCheck [54] and HyperSentry [55] extended VMI-based
monitoring by integrating with System Management Mode
(SMM) to perform stealthy, runtime validation of kernel
integrity. These systems offer tamper resistance but do not
reconstruct the behavior chains or attribute kernel-level activity
to initiating user-space processes—key capabilities provided
by our approach. Unlike previous systems, our sandbox not
only enables high-fidelity kernel monitoring but also addresses
the fundamental challenge of tracing the control flow within
Windows kernel drivers.

B. Kernel Analysis and Driver Abuse Detection

Unlike the static analysis tool [25], which can only flag
potentially malicious drivers based on the presence of dan-
gerous APIs, our approach employs dynamic analysis to eval-
uate/extract the actual driver behavior based on kernel-level
functions and events tracing, capturing complex behaviors
such as dynamic code execution, memory mappings, and code
integrity tampering. Beyond virtualization-based analysis, a
significant body of research has addressed the detection of
malicious activities directly within the kernel, with a particular
focus on rootkits and driver-based threats. Early efforts such
as Copilot [8] pioneered hardware-assisted runtime monitoring
by verifying the integrity of kernel memory effectively de-
tecting unauthorized modifications caused by rootkits. Later,
Yin et al. proposed HookScout [9], a static and dynamic
analysis system that detects kernel rootkits by identifying
anomalous control flow caused by function hooking. Although
effective against known hooking strategies, such techniques
often struggle against obfuscation and dynamic resolution,
which are common in modern BYOVD drivers. Several works
have explored dynamic control-flow tracing and execution
monitoring to detect abuse of kernel interfaces, especially for
rootkit detection [10], [11]. Such systems use taint analysis for
tracking specific events that happen in the kernel. In contrast,
our system is designed not only to detect violations of kernel
security policies but also to provide fine-grained semantic
traces of driver-level execution. This enables a deeper under-
standing of how malicious user-space processes interact with
vulnerable drivers to subvert kernel protections—something

not addressed by prior rootkit detection or kernel integrity
enforcement systems.

C. Bring Your Own Vulnerable Driver (BYOVD)

Despite its significance and rising use by sophisticated threat
actors, BYOVD remains underexplored in academic research.
The cybersecurity industry has provided most of the insights,
documenting real-world attacks involving vulnerable drivers
used to disable security tools, deploy rootkits, or tamper with
protected memory. For example, Check Point [3] described
the systematic abuse of the truesight.sys driver as part
of an EDR evasion campaign. Their work also introduced
a large-scale driver hunting methodology combining YARA
rule filtering with manual analysis to identify drivers exposing
dangerous kernel functionality. Climent-Pommeret [56] ex-
panded on this by showing how to discover and validate drivers
capable of killing protected processes using static imports and
control flow analysis.

In parallel, VMware’s Threat Analysis Unit (TAU) proposed
an automated approach to identify vulnerable IOCTL handlers
using IDA scripting and triage heuristics [57]. Their research
uncovered dozens of previously undocumented IOCTL-based
attack surfaces and confirmed that malware frequently lever-
ages vulnerable drivers for stealthy code execution or privilege
escalation. While Microsoft maintains a blocklist of known
vulnerable drivers and community projects like LOLDrivers
collect signatures and behaviors, these measures remain reac-
tive and incomplete. Many signed, exploitable drivers are still
actively used in the wild, often with little detection.

IX. CONCLUSIONS

This work shines a light on BYOVD attacks by pairing a
five-stage behavior-centric taxonomy with a hypervisor-based
sandbox that transparently follows every jump from user space
down to kernel instructions. Across 8,779 malware samples
loading 773 drivers, our system discovered driver abuse that
traditional user-mode sandboxes miss and enabled the respon-
sible disclosure of seven unknown vulnerable drivers. Overall,
our results demonstrate that this study lays the first brick for
closing a long-standing visibility gap and equips defenders
with actionable intelligence to harden Windows systems.

ACKNOWLEDGEMENT

This work was supported by project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU.
Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European
Union or the Italian MUR. Neither the European Union nor the
Italian MUR can be held responsible for them. Moreover, this
work was also funded by two government grants managed by
the French National Research Agency with references: “ANR-
22-PECY-0007” and “ANR-23-IAS4-0001.”

13



ETHICS CONSIDERATIONS

Our research involved analyzing and identifying security
vulnerabilities in Windows drivers. Due to the potential risks
associated with these vulnerabilities, we adhered to responsible
disclosure guidelines throughout the study. Specifically, when
we traced the vulnerabilities back to the respective vendors, we
contacted them and provided detailed technical information,
the malware samples that abuse them, and remediation sugges-
tions. We communicated with the vendors and gave them 90
days to acknowledge, verify, and address the issues prior to any
public disclosure. Additionally, we reported the vulnerabilities
to Microsoft, MITRE, and the LOLDrivers project.

As of July 2025, we have submitted seven confirmed
vulnerable drivers. Their hashes are reported in Table VII in
the Appendix. We obtained CVE-2024-26506 from MITRE
for probmon.sys. However, we have not yet received any
feedback from either Microsoft or the other companies in-
volved.
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APPENDIX A
APPENDIX

Table VI: List of the Abusable Imports usually found in kernel drivers, along with a brief description of how each function
can be misused.

Imported Function Description

IoCreateDevice
IoCreateDeviceSecure

If not called correctly, they can expose a device object with a weak discretionary ACL to the user mode, opening the
possibility for an unprivileged application to communicate with the driver.

MmMapIoSpace
MmMapIoSpaceEx
IoAllocateMdl

MmMapLockedPagesSpecifyCache

They can be used to map a specified physical address into a virtual address to access it directly.

MmSystemRangeStart
ProbeForRead
ProbeForWrite

They can be used to obtain information about the memory configuration of a running system.

ObCloseHandle It can be used to close handles that can be bounded to a specific process and usually passed to the user mode to
reference kernel objects. Although closing a handle is a legitimate operation, a driver can cause a process to terminate
by closing its handles.

ZwMapViewOfSection It can be used to map section objects to the virtual memory. This technique is commonly used to map a library into
different processes or to map physical memory ranges.

ZwOpenProcess
ZwOpenThread

ZwOpenProcessTokenEx
ZwOpenProcessTokenEx

ZwCreateFile
IoCreateFile

ZwOpenSymbolicLinkObject

They can be used to obtain a privileged handle to an object in order to manipulate it without any security check on
the caller.

ZwSuspendthread
ZwAdjustPrivilegesToken

ZwDeleteFile
ZwDeleteKey

They are functions that can be used to manipulate handles opened with the previously mentioned methods.

ZwTerminateProcess It can be used to terminate a process, also PPL ones.

Table VII: Reported Drivers

Driver Name SHA1

kavservice.bin be80f4d2a669f60354703a21daffb7b2128de190
probmon.sys 7310d6399683ba3eb2f695a2071e0e45891d743b

IoBitUnlocker.sys abeedc8ac31eaee1948d3f56aa6c212cd9dc8c3a
IoBitUnlocker.sys 0e6ef35f6f68be6d72e4a225494c02557d39cacc

Zemana.sys 63399ac91e92f0c92ffaeac43616e1b7c77a9791
TfSysMon.sys 94493d7739c5ee7346da31d9523404d62682b195
TrueSight.sys 28c37b1c0af4a2a75a9662544fb3181a71c45dd2
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A. Formalization of the Analysis Pipeline

To comprehensively capture the end-to-end behavior of BY-
OVD attacks and formalize our dynamic analysis system, we
structure it into four distinct stages: (1) Execution Environ-
ment Setup, (2) Runtime Trace Collection, (3) Post-Execution
Behavioral Analysis, and (4) Behavioral Classification and
Attribution.

Stage 1: Execution Environment Setup – Let E be the
controlled sandbox environment defined as:

E = (V,K,M)

Where: V is a Xen-based hypervisor instance. K is the guest
OS kernel and the introspection module that tracks its activity
(e.g., Windows 10 with Kernelmon). M is the sample under
test. The sandbox initializes a VM vi ∈ V with K, loads
M, and enables logging through the Drakvuf-based plugin
kernelmon.

Stage 2: Runtime Trace Collection – During the sample ex-
ecution, kernelmon intercepts system-level events and records
them in our database as a serialized JSON trace T .

T = {e1, e2, . . . , en}, ei = (fni, tsi, argsi, ctxi)

Each event ei contains the following information:
• fni: hooked kernel function name;
• tsi: timestamp of invocation;
• argsi: function arguments and function address;
• ctxi: execution context (including driver, process ID, process

Name, parent process ID, privileges.).

Stage 3: Post-Execution Behavioral Analysis – Let B =
{b1, b2, . . . , bm} be the set of observable behaviors defined in
Section III (e.g., ProtectedProcessTermination, UnsafePoolAl-
location), we define a mapping function:

Φ : T → B

where for each bj ∈ B, Φ−1(bj) ⊂ T is the minimal subset
of events needed to confirm the behavior bj .

Additionally, the reverse dataflow tracking of the behaviour
bj is performed by constructing the call chain:

Cbj = ⟨ei, ek, . . . ⟩ where Φ(Cbj ) = bj

Stage 4: Behavioral Classification and Attribution – The
analysis results are expressed as a tuple:

R = (DIDs,PIDs,B, C)

where DIDs is the set of driver IDs (module names, hashes),
PIDs is the set of originating process IDs, B are the Detected
Behaviors, and C are the Corresponding Semantic Call Chains.

Each trace is evaluated against our set of potentially ex-
ploitable behaviors. VDB , defined in Section III, to determine
the presence of BYOVD activity:

is_BYOVD(R) =

{︄
True, if ∃bj ∈ B, bj matches VDB

False, otherwise

End-to-End Pipeline – The full pipeline is then defined as:

P(M) = is_BYOVD ◦ Φ ◦ T ◦ E

Where P(M) = True signals the detection of a BYOVD-
based exploit triggered by the malware sample M.

Statistical tests for Table II (sample-level)

Using 2×2 contingency analyses, we compared the propor-
tions at the two different stages. (I) the proportion of executed
samples that loaded at least one driver and (II) the proportion
of loader samples that exhibited a BYOVD behavior, contrast-
ing high- vs. low-VT groups for KVD and PVD. Fisher’s exact
test served as the primary inference method, complemented
by Pearson’s χ2 and two-proportion z-tests; effect sizes are
reported as risk differences (RD) and odds ratios (OR). In
KVD, the load rate was lower for high-VT samples (468/1047,
44.7%) than for low-VT samples (1003/1948, 51.5%) [RD =
−6.8%, OR = 0.76, pFisher = 0.0004], whereas the behavior
rate among loaders was only slightly higher (110/468, 23.5%
vs. 194/1003, 19.3%) and not significant [RD = +4.2%, OR
= 1.28, pFisher = 0.072]. In PVD, load rates were essentially
identical (544/2202, 24.7% vs. 868/3582, 24.2%) [RD =
+0.5%, OR = 1.03, pFisher = 0.68], but the behavior rate
among loaders was markedly higher for high-VT samples
(275/544, 50.6% vs. 167/868, 19.2%) [RD = +31.3%, OR
= 4.29, pFisher < 10−6]. Overall, VT score strongly correlates
with observed behavior only in PVD, while differences either
reverse or vanish at other stages.

Table VIII: Table II counts and Wilson 95% confidence
intervals (CI) for proportions at two stages: loading (executed
→ loaded) and behavior (loaded → behavior).

Dataset VT group Executed Loaded Behav. Load prop CIlow CIhigh Beh prop CIlow CIhigh

KVD Low VT 1948 1003 194 0.515 0.494 0.536 0.193 0.170 0.218
KVD High VT 1047 468 110 0.447 0.416 0.479 0.235 0.197 0.277
PVD Low VT 3582 868 167 0.242 0.229 0.256 0.192 0.167 0.219
PVD High VT 2202 544 275 0.247 0.229 0.266 0.506 0.465 0.547

Table IX: High- vs. low-VT comparisons for Table II at each
stage. Fisher’s exact p-values are primary. Proportions use
Wilson CIs.

Dataset Stage OR pFisher χ2 pχ2 z pz RD RR

KVD Load rate 0.7615 0.0004 12.5608 0.0004 -3.5441 0.0004 -0.0679 0.8681
KVD Behavior rate 1.2813 0.0723 3.3720 0.0663 1.8363 0.0663 0.0416 1.2151
PVD Load rate 1.0259 0.6821 0.1650 0.6846 0.4062 0.6846 0.0047 1.0194
PVD Behavior rate 4.2912 0.0000 152.4672 0.0000 12.3478 0.0000 0.3131 2.6273

OR: odds ratio; RD: risk difference (HighVT–LowVT).

Then, to quantify the difference in observed behaviors, we
compared the two high-VT groups with exact and asymptotic
proportion tests. Fisher’s exact test on the 2×2 table (110/468
vs. 275/544) was decisive (p < 10−15; OR = 0.30), and a two-
proportion z-test yielded z = −8.84, pFisher = 1.2 × 10−18.
The risk difference (RD) was −27.1% with a Newcombe
95% CI of [−34.9%,−18.8%]; the risk ratio (RR) was 0.47
(Katz 95% CI: [0.39, 0.56]). Cohen’s h = −0.58 indicates a
large standardized effect.Thus, high-VT PVD drivers are far
more likely to exhibit BYOVD behaviors than high-VT KVD
drivers.
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Table X: High-VT KVD vs. High-VT PVD behavior rates.

Group Behaviors Loaders Proportion 95% CI (Wilson)

High-VT KVD 110 468 0.235 [0.197, 0.277]
High-VT PVD 275 544 0.506 [0.465, 0.547]

Between-group effects (High-VT KVD vs. High-VT PVD):
RD = −0.270 (95% CI: [−0.349,−0.188])
RR = 0.465 (95% CI: [0.387, 0.559])
OR = 0.301 (pFisher < 10−15)
z = −8.84 (p = 1.2× 10−18)
Cohen’s h = −0.58

Then, given that high-VT KVD samples actually load
drivers less often than low-VT ones, we compared their
execution time. We adopted the Mann–Whitney U test (non-
parametric location test) because the distributions departed
from normality. With ties handled via average ranks and a
two-sided α = 0.05, we obtained U = 1,182,191.0 and
p = 1.81 × 10−3, leading to rejection of the null hypothesis
that the two distributions have the same central tendency. To
quantify the magnitude and direction of the effect, we reported
Cliff’s delta δ = −0.375. It indicates a medium effect size and
a shift favoring the low-VT group (negative sign). This means
that low-VT KVD drivers that have loaded at least one driver
have been running longer than their high-VT counterparts.

Finally, we also compared with the same statistical method-
ology the execution time of high-VT KVD and PVD. We
obtained U = 1,804,191.0 with p = 0.020, and δ = 0.385.
This medium effect size indicates that high-VT KVD drivers
have been running for a longer time than high-VT PVD
drivers.

Statistical analysis of Table III (driver-group level)

We compared the proportion of driver groups exhibiting
at least one observed BYOVD behavior between high- and
low-VT strata for both datasets (KVD and PVD). Wilson
95% confidence intervals (CI) are reported for proportions;
Fisher’s exact, two-proportion z-tests, and risk-difference CIs
(Newcombe) were used for inference.

Table XI: Driver-group proportions with observed behaviors
(Wilson 95% CI).

Dataset VT group Behav. No behav. Total Prop. CIlow CIhigh

KVD High VT 28 36 64 0.4375 0.323 0.559
KVD Low VT 28 63 91 0.3077 0.222 0.409
PVD High VT 19 37 56 0.3393 0.229 0.470
PVD Low VT 38 59 97 0.3918 0.301 0.491

Table XII: High vs. low VT comparisons per dataset.

Dataset OR pFisher χ2 pχ2 z pz RD 95% CIRD

KVD 1.75 0.23 2.74 0.10 1.66 0.098 +0.130 [–0.086, +0.337]
PVD 0.80 0.61 0.42 0.52 -0.65 0.518 -0.053 [–0.262, +0.170]

OR: odds ratio; RD: risk difference (HighVT–LowVT).

At the driver-group level, VT score does not significantly
predict whether a loaded driver exhibits observable BYOVD
behaviors. For KVD, 43.8% of high-VT vs. 30.8% of low-
VT driver groups showed behaviors (Fisher p = 0.23; RD =
+13.0%, 95% CI [–8.6%, +33.7%]). For PVD, the proportions

were 33.9% vs. 39.2% (Fisher p = 0.61; RD = –5.3%, 95% CI
[–26.2%, +17.0%]). These wide, overlapping intervals support
the conclusion that VT score is a weak discriminator once a
driver is actually loaded; the stronger VT-related differences
seen at the sample level (Table II) largely vanish when
aggregating by driver name.
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APPENDIX B
ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: Artifact is available on Zenodo at the
following link: https://doi.org/10.5281/zenodo.15864111

2) Hardware dependencies: Intel CPU with virtualization
support (VT-x) and with Extended Page Tables (EPT)

3) Software dependencies: DRAKVUF (tag 1.0 from
github) and drakvuf-sandbox, tag 0.18.2.

4) Benchmarks: Drivers and executable samples. Hashes
has been provided in the artifact.

B. Artifact Installation & Configuration

Source code and dataset are provided. To correctly install
and configure the artifact for a complete evaluation, both
Drakvuf and the drakvuf-sandbox framework must be com-
piled from the source code and installed. Drakvuf-sandbox
documentation explains how to configure a Windows guest
machine where samples will be detonated. Additional infor-
mation is available upon request by contacting the authors.

C. Major Claims

• (C1): We implemented kernelmon, a plugin for DRAKVUF
capable of tracing kernel-level functions and extract context
and parameters information. This is detailed in sub-section
A. System Architecture & Requirements from section IV.
APPROACH.

• (C2): We implemented kernelmon_analysis, an analyzer
that is able to reconstruct the function call data-flow and
identifies suspicious behaviors. Our system was able to
uncover suspicious behaviors in previously unknown drivers.
This is detailed by the case studies provided in sub-section
E. Findings and Highlights from section VI. EVALUATION.

• (C3): We constructed a dataset of drivers and executable
samples to test and validate our sandbox extension. This is
detailed in section V. DATASET DESIGN AND METHOD-
OLOGY.

D. Evaluation

None
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